

GLOBAL CHANGE AND ECOSYSTEMS 6th Framework Programme No 515234

IASON:International Action for the Sustainability of the Mediterranean and Black Sea Environment

Coordinator: Hellenic Centre for Marine Research, Greece

Assessment of Hazards and Threats on the Coastal Zone, arising either from Global Change or from Regional Variability due to either Natural or Anthropogenic Forcing(WP4)

(D4.2)

Integrated Monitoring responsible (R.Mihnea) Nutrients (A.Cociasu) Heavy Metals (A.Oros) Organic Contaminants V.Coatu & V. Piescu) Biological Indicators phytoplankton, zoobenthos, microbiology (L.Boicenco, C.Dumitrache, E.Stoica)

Project no.: 515234 Project acronym: IASON Project title: <u>I</u>nternational <u>A</u>ction for <u>S</u>ustainability of the Mediterranean and Black Sea Envir<u>O</u>nme<u>N</u>t

Instrument: Specific Support Action

Thematic Priority: 6.3 GLOBAL CHANGE AND ECOSYSTEMS

Deliverable 4.2

Assessment of Hazards and Threats on the Coastal Zone, arising either from Global Change or from Regional Variability due to either Natural or Anthropogenic Forcing

> Due date of deliverable: February 2006 Actual submission date: August 2006

Start date of project: 1st January 2005

Duration 18 months

Organisation name of lead contractor for this deliverable: Hellenic Centre for Marine Research (HCMR)

Proje	Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)					
	Dissemination Level					
PU	Public	Χ				
PP	Restricted to other programme participants (including the Commission Services)					
RE	Restricted to a group specified by the consortium (including the Commission Services)					
СО	Confidential, only for members of the consortium (including the Commission Services)					

TABLE OF CONTENTS

Chapters	Pag.
Table of Contents	1
General Introduction	6
Objectives of the workpackage	7
A. The Black Sea Coastal Zone	8
1. Present day State of Erosion	8
1.1. Introduction, general setting	8
1.2. The Black Sea coastline.	8
1.3. Coastal erosion in the Black Sea. Factors controlling the erosional	11
process	
2. Threats to the Coastal Zone generated by Global Changes and	12
Anthropogenic Pressure	
2.1. River Flooding	14
2.2. Littoral Beach Barrier Flooding by the Sea	15
2.3. Risks and Impacts of Climate Change and Sea Level Rise	16
2.3.1. Impacts on rainfall and water flow and water resources	16
2.3.2. Impacts of Global Changes and Sea Level Rise on the Danube Delta	16
Territory and on the Coastal Zone.	
Table 2 – The Black Sea Coastal Zoning and Description	19
Executive Summary.	42
The Black Sea Coastal Zone. State of Erosion, Hazards and Risk	
assessment and Problems to be Solved	
1. General Description	42
2. Coastal erosion in the Black Sea. Factors controlling the erosional process	43
3. Hazards and Risk assessment	45
4. Priority issues to be developed by future EC research programmes	45
References	47
B.The Mediterranean Sea Coastal Zone	49
1. Introduction	49
2. The Mediterranean Sea and Coastal Erosion	51

2.1. General information	51
2.2. Erosion in the Mediterranean coastal regions	54
2.3. Coastal classification	55
2.4. Hard rock coasts	56
2.5. Sedimentary coast	56
2.6. Definition of coastal areas in the Mediterranean Sea	57
2.7. Erosion	59
2.7.1. Physical processes	59
2.7.2. Erosion of different coastal types due to driving forces	64
2.7.3. Natural processes combined with man-made actions	65
2.8. Erosion due to human interference in the coastal zone	67
2.8.1. General	67
2.8.2. Damming	67
2.8.3. Gravel mining	68
2.8.4. Ports, port extentions and marinas	68
2.8.5. Urban and economic development	68
2.9. Socio-economics and environment	69
2.9.1. Economic situation	69
2.9.2. Urbanization	69
2.9.3. Tourism	69
2.9.4. Agriculture	69
2.9.5. Fisheries	70
2.9.6. Aquaculture	70
2.9.7. Industry	70
2.9.8. Sea transportation	71
2. The Mediterranean Sea and Coastal Erosion	66
3. Coastal erosion at basin scale	73
3.1. General	73
3.2. Policy options	74
3.3. Policy options adopted for Eurosion project	74
3.3.1. Do nothing	74
3.3.2. Hold the line	74
3.3.3. Move seaward	75

3.3.4. Managed realignment	75
3.3.5. Limited intervention	75
3.4. Organization and legislation	75
3.5. Policy options implemented in the Mediterranean Sea	79
3.6. Strategy	80
3.6.1. Approach to combat erosion	80
3.6.2. Hard and soft measures	81
3.6.3. Measures concerning safety of hinterland	81
4. Coastal erosion by countries	82
4.1. Albania	82
4.2. Algeria	86
4.3. Bosnia and Herzegovina	89
4.4. Croatia	91
4.5. Cyprus	92
4.6. Egypt	95
4.7. France	97
4.8. Greece	98
4.9. Israel	100
4.10. Italy	105
4.11. Lebanon	107
4.12. Libya	109
4.13. Malta	110
4.14. Monaco	112
4.15. Morocco	113
4.16. Palestinian Authority (Gaza Strip)	115
4.17. Serbia and Montenegro	116
4.18. Slovenia	118
4.19. Spain	120
4.20. Syria	123
4.21. Tunisia	125
4.22. Turkey	127
Table 8 – The editerranean Sea coastal zonning and description	129

Executive Summary.	249
The Mediterranean Sea Coastal Zone. State of Erosion, Hazards and Risk	
assessment and Problems to be Solved	
1. Status of climate change induced sea level rise in the Mediterranean	249
2. Status of coastal erosion in the Mediterranean due to anthropogenic impact	249
3. Forecasts of coastal erosion due to climate change and anthropogenic	250
causes	
4. Forecasted impact of coastal erosion due to tsunami events in the	250
Mediterranean	
C. Review on the available coastal erosion models implemented in	251
Mediterranean and Black Sea	
1. Introduction	251
2. Delft3D Model	252
2.1. Model description	252
2.2. Model implementations	252
3. Generalized model for simulating shoreline change (Genesis)	254
3.1. Model description	254
3.2. Model implementations	254
4. SBEACH Model	255
4.1. Model description	255
4.2. Model implementations	256
5. UNIform Beach Sediment Transport (UNIBEST)	257
5.1. Model description	257
5.2. Model implementations	257
6. Other numerical simulations	259
REFERENCES	262

GENERAL INTRODUCTION

The Deliverable D 4.2 – "Assessment of hazards and threats on the coastal zone, arising either from Global Change or from regional variability due to either natural or anthropogenic forcing" belongs to the WP 4: "Pressures on the Coastal Zones of the Mediterranean and Black Seas".

The report gatheres the information from a large number of old and recent studies that have dealt with the impact of the Global Change and anthropogenic forcing on the state of the Coastal Zone of the Mediterranean and the Black seas. The studies showed that the combination of global changes, sea-level rising and contamination could produce unpredictable, dramatic and ireversible environmental modifications including catastrophic coastline erosions, changes in coastal sea ecosystem structure and functioning, land loos, socio-economic negative effects etc.

Increasing frequency of extreme events have also dramatic effects on the Coastal Zone:

- the recent decade was marked by both record floods and droughts in tributary river systems that question earlier premises about the climatic controls on the system;
- continuously increasing wind and wave energy, extreme storms, catastrophic events as earthquakes, tsunamis, land or sediment slides and slumps, sudden and masive green-house gas escapes from the sediments etc.

The report reviews the current knowledge on immediate and long-term threats to the coastal zone and the role of science in identifying hazards. Efforts have been done for determining the knowledge gaps that require additional research in the future.

The Black Sea Coastal Zone and the Mediterranean one are presented separately; however it is obviuos that the effects of the global changes and anthropogenic forcing are similar in both seas, and the conclusions point on a clear and urgent need for complex, continuous and detailed research and observation systems on these combined stresses and on limits of resilience of coastal zone ecosystems.

Objectives of the workpackage WP 4, deliverable D 4.2

The WP 4, task 4.3 (deliverable D 4.2), is focused on assessing the current state of the Mediterranean and Black seas Coastal Zone, the impact on it of the Global Change (erosion, sea-level rise) and the anthropogenic forcing as well as the potential hazards and threats to

coastal sea and littoral zone. The synergetic effects of all impacting factors are taken into consideration. The gaps of the present-day state of knowledge about pressures on the Coastal Zone are highlighted.

The conclusions of the report point on a clear and urgent need for:

- a very complex, multidisciplinary approach;
- continuous and detailed research programmes in the most endangered areas or regions;

- implementing continuous observation systems to improve the knowledge on the impact of combined stresses and on limits of resilience of coastal zone ecosystems.

A. THE BLACK SEA COASTAL ZONE

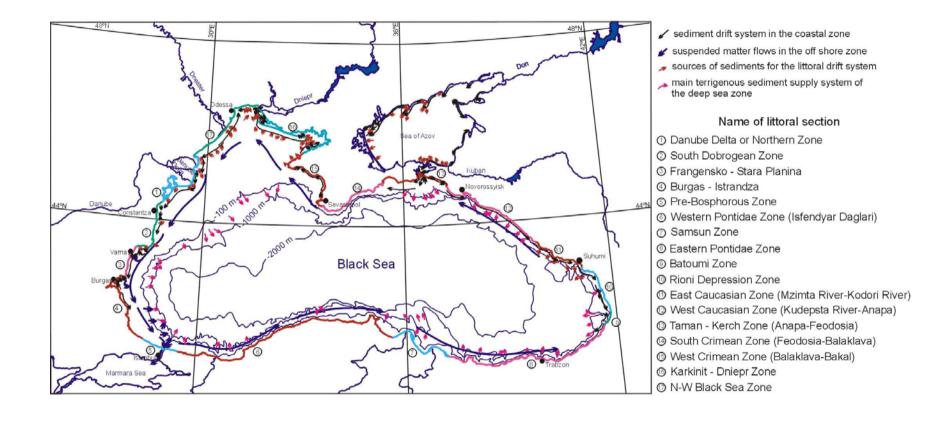
1. Present day State of Erosion

1.1. Introduction, general setting

The Black Sea is one of the largest enclosed seas in the world, covering an area of about 4.2 x 10^5 km²; the maximum depth of the sea is 2,212 m and the total volume of the water - 534,000 km³. Most of this water (the 423,000 km³ that lies below a depth of 150-200 m) is anoxic and contaminated with H₂S. The Black Sea drainage basin covers more than 2 million km²; more than 160 million people live in this area. The largest rivers flowing into the sea are the Danube, the Dniester, the Dnieper and the Don. The River Danube is the most important European waterway flowing 2,857 km across the continent from the Schwarzwald Massif in Germany down to the Black Sea. Its water discharge into the Black Sea is about 200 km³ of water/year. The Danube drainage basin extends on 817,000 km², more than 15 countries sharing this catchment area.

1.2. The Black Sea coastline

The total length of the Black Sea coastline is over 4 400 km and belongs to 6 states: Bulgaria, Turkey, Georgia, Russian Federation, Ukraine and Romania. The large variety of geomorphologic types of these coasts corresponds to different geological environments surrounding the Black Sea.


The Black Sea coastal zone can be divided in 17 main zones characterised by different geology and morphology, as well as specific littoral water circulation, sediment drift systems and sedimentary budget (Fig.1, Table 2).

In a more general approach the Black Sea coast zone could be subdivided into three main morphodynamic categories, with very specific characteristics and behaviour:

1. *Low, accumulative coasts* mostly related to the main rivers mouth zones. This type of littoral zone consists of sandy complex barrier beaches with strong longshore sediment drift systems; these zones are generally characterised by isostatic adjustments of overloading by rapid accumulation of sediments (subsidence).

ZONATION OF THE BLACK SEA COASTAL ZONE Sediment movement systems

ASON

After: N. Panin, E. Ion, G. Ion

To this type belongs, first of all, the Danube Delta with a very exposed to erosion littoral of about 240 Km; then within this type must be considered partly the unit River Dnieper liman - Karkinit Bay (total length of about 618 Km), specifically the Kinburn spit - Dolgyi Island section (~ 20 Km) and Tendra spit - Dzharylgatch Island section (~137 Km). The Taman - Anapa section of about 200 Km long (of which 66 Km are the Anapa spit) represents mainly an accumulation of sediments brought by the River Cuban few hundred years ago, and could be allocate to the same first type of coasts. Further to the South, the mentioned type is present within the Kolkhida (Rioni) Lowland where the rivers Chobi, Rioni, Inguri and Supsa have built up their deltas. On the Turkish coast there are the deltas of Kizilirmak, Yesilirmak and Sakaraya rivers, and finally, in Bulgaria, sandy accumulative beaches are related mainly to the rivers Diavolska, Kamchya, Provadyiska and Batova, summing about 100 Km.

The accumulative coasts of Anapa section, Kolkhida Depression, the deltaic sections on Turkish and Bulgarian coasts are located within or nearby zones of high relief energy, relatively strong sediment nourishment and general uplifting tendency, so their equilibrium state is not yet very strongly affected.

2. *Erosive coasts within lowstanding plateaux and plains*, with active cliffs in loss and losslike deposits, sometimes underlyed by older deposits as Pontian limestones, Meotian clays and Sarmatian lumachelles, with very narrow beaches in front of the cliffs.

To this type of coasts could be distributed the north-western unit of the Ukrainian coast zone. This unit extends from the northern limit of the Danube Delta (of the Kilia secondary delta) to the town of Ochakov (western limit of the Dnieper liman), summing 232 Km.

The Southern unit of the Romanian coastal zone (Cape Midia - Vama Veche at the Bulgarian border - about 75 Km long), as well as the Northern part of the Bulgarian coast, from the Romanian border to Caliacra Cape (about 50 Km long) belong to the same type of littoral.

3. *Mountainous coasts*, with cliffs, marine terraces, land slides, sometimes with sandy or gravely beaches. This type of coasts is generally subject of isostatic and orogenic uplift.

To this type are belonging the coasts of Crimea, Caucasus, Pontides, Strandza and Staro Planina Mountains, as well as of Frangensko and Avrensko plateaux.

1.3. Coastal erosion in the Black Sea. Factors controlling the erosional process

The coastal erosion in the Black Sea represents one of the main environmental concerns of the riparian countries. The erosion is controlled by:

□*Global and natural factors.* The Black Sea coastlines erosion is strengthened as everywhere in the World Ocean by the global changes and the general sea level rise. The coast erosion will depend on synergetic effect of factors controlling the littoral processes (meteorological regime, wave energy regime, water circulation, sediment supply and drift etc.), global changes and the consequent modification of the energetic level of the coastal sea, general sea level rise and regional characteristics as shoreline morphology, elevation and geologic constitution, subsidence or/ and neotectonic regime.

Anthropogenic factors. The coast zone erosion and the state of the coastal sea ecosystems are strongly affected by the anthropic activities, the effect of which is added to the impact of natural factors. The anthropogenic changes of large rivers hydrologic characteristics (water and especially sediment supply, regularisation of floods etc.), men-made littoral structures as breakwaters, dykes, groins, harbours etc. which are modifying the littoral circulation cells, the uncontrolled use of beach sand, dredging of sand too close to the beaches or within the river mouth bars and many other activities are causing an enhancement of coastal erosion and endangering of the coastal ecosystems.

The first category of coasts described in the Chapter 1.2 (Low, accumulative coasts) is the most influenced by the global changes, specifically by the sea level changes and by the changes in the river sediment inputs. The decreasing of sediment supply and changes in littoral sediment drift due to anthropic activities (river damming, hydro-technical regularisation, littoral structures etc.), especially when the sandy beaches are low, added to the rising of the sea level and the increasing of littoral sea energy could determine in certain conditions a very active and almost continuous recession of the beach line (up to 20 m/y, as it happens in some sections within the Danube Delta littoral). This process is causing land losses, environmental changes and economic degradation of the coastal zone. If the region represents the coastal zone of an important delta which plays essential role in the normal structuring and functioning of ecosystems, any changes of delta/sea interaction zone environments could be fatal and irreparable.

The second category of coasts described above (*Erosive coasts within lowstanding plateaux and plains*) could be also affected by erosional processes but the rates of coastline regression do not reach the same values as within the first category (only 1-2 m/y). In this case the erosion affects mostly the narrow beaches in front of the cliffs. The environmental transformations are not so important and consequently the economic losses are much lower.

The third type of coasts (*Mountainous coasts*) is the least affected and transformed by the erosional processes. Generally, the littoral of this type is constituted of consolidated rocks, resistant to the eroding process. In front of such rocky littoral there are no beaches or they are very narrow and coarse grained (coarse-grained sand and pebbles). If the development of tourism is intended one have to build up artificial beaches and pertaining protection structures as wavebrakers, groins etc. In this case one could affirm that the only economic concern is the maintenance of these artificial beaches.

2. Threats to the Coastal Zone generated by Global Changes and Anthropogenic Pressure

Taking into consideration the above mentioned observations, it clearly appears that the most vulnerable sections of the Black Sea Coastal Zone belong to the first type (*Low, accumulative coasts*) described in the chapter 1.2. Among the coast zone sections referred to this type the Danube Delta is the most significant and important.

The Danube Delta is located in the north-western part of the Black Sea, between 44° 25' and 45° 30' N and between 28° 45' and 29° 46' E. The delta plain covers an area of about 5,800 km² of which the lower, marine delta plain represents ca. 1,800 km². The Danube Delta shoreline is about 240 km long, of which about 75 km represents the coastline of Kilia Delta and belongs to Ukraine and 165 km is on Romanian territory.

The marine delta plain is a very low area with marshes, lakes and numerous old beach-ridges (very elongated, narrow and extremely low altitude sand bodies), which in certain zones generate, by juxtaposition, accumulative littoral bodies (the main of them are Letea, Caraorman and Sãrãturile) with limited dune fields and the highest altitudes within the delta territory (+12.4 m in the Letea Formation, and +7 m in the Caraorman Formation). About 20.5 % of the Danube delta-plain represents areas with negative relief, i.e. with an average level below the Black Sea - Sulina reference system, about 54.5 % of the Danube delta plain consists of areas having altitudes between 0 and 1 m above the sea-level, and 18 % with altitudes between 1 and 2 m.

In front of the Danube Delta, the north-western Black Sea continental shelf is very large (over 100 km width). This part of the sea receives the discharge of largest rivers from the Central and Eastern Europe – the Danube with a water discharge of about 200 km³/yr. and the Ukrainian rivers (Dnieper, Southern Bug and Dniester) contributing about 66 km³/yr.

The present-day longshore sediment drift system off the Danube Delta area is directed toward the south (see Table 2, fig.2). It is induced by the predominant winds, which are from the north and northeast and the most frequent wind waves recorded also from NE corresponding to the prevailing wind direction. The mean maximum heights of wind waves in front of the Danube Delta reach 7.0 m. The energy of storm waves reaches important values (to 12,242 kWh/m, recorded on February 17, 1979), but generally the energy value is about 2 000 kWh/m (Spãtaru, 1984). The storm surges from N, NE, E and SE direction induce water level rises to 1.2 - 1.5 m. The tide in the Black Sea has an average period of 12h 25' and amplitudes of only 7 - 11 cm (Bondar *et al.*, 1973; Sorokin, 1982). The general relative sealevel rise in the delta-front area (at Sulina gauge) is estimated at 3.7 mm/a, of which subsidence accounts for 1.5 - 1.8 mm/a (Bondar, 1989).

In such natural conditions, for the Danube Delta the main factors of risk are the river flooding and the littoral beach barrier flooding by the sea. The climate changes and the related sea level rise represent also elements of risk.

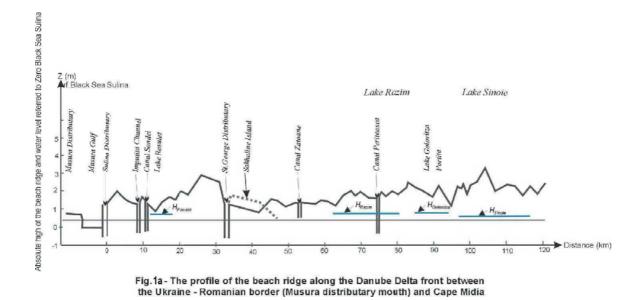
2.1. River Flooding

Flooding events in the Danube Delta occur when the water discharges of the Danube River are over 10,000 m³.s⁻¹. According to existent records, catastrophic floodings in the Lower Danube section took place in 1845, 1853, 1888, 1895, 1897, 1907, 1914, 1919, 1924, 1932, 1940, 1941, 1944, 1947, 1954, 1955, 1956, 1958, 1962, 1965, 1970, 1970, 1975, 1980, 1981, 1988, 2005. Statistic analysis of the data set for 161 years (1840 – 2000), concerning the mean annual water discharges of the Danube River, shows that, at the delta apex, were recorded over 89 flooding events. According to the existing data-sets, the flooding events with discharges of 10,000 – 11,000 m³.s⁻¹ along the Lower Danube section have a mean repeatability of occurrence of two years.

For an easier assessment of the river water level and its influence on the delta territory a special measure unit, named *hydro-degree*, has been defined: a hydro-degree represents one tenth of the highest water level at a given point. The table below demonstrates the impact of

flooding on the Danube Delta territory by showing the non-flooded areas at different stages of rising of the Danube water level.

	Non flooded area (ha)						
Geomorphological	Lowest waters	Low waters	Ordinary	Highest			
categories	3 hydro-	4 hydro-	waters 5-6	waters 10			
categories	degrees	degrees	hydro-degrees	hydro-			
				degrees			
Natural fluvial	19,757	15,343	9,850	-			
levees							
Lacustrine spits	3,005	2,607	2,210	30			
Present day barrier	2,400	2,390	2,380	1,800			
beach							
Old littoral	26,215	23,811	21,410	10,000			
accumulative bodies,							
of which:							
- Letea	12,710	12,185	11,660	7,915			
(altitude max.+12.6							
m)							
- Caraorman	5,540	4,565	3,590	165			
(altitude max. +6.5							
m)							
- Saraturile	5,465	4,990	4,515	2,000			
TOTAL	72,542	62,131	51,045	13,775			


Table No.1 – Non-flooded areas of the Danube Delta at different water levels of the Danube River

2.2. Littoral Beach Barrier Flooding by the Sea

The present sandy beach barrier along the Danube Delta Front is very low (+0.7 to +1.5 m) (Fig. 1a). The lowest sections are: Girla Imputita-Cisla Vadanei (about 15 Km long, corresponding to the inter-beach ridge depression Rosu-Lumina), Ciotic-Perisor (20 Km long,

corresponding to the Zatoane Depression) and Portita-Periboina (about 20 km, the present-day beach barrier bordering the lagoon complex Razim-Sinoie). These sections represent the most vulnerable zones of the delta coastline to the flooding by the sea.

To the natural high degree of risk the anthropogenic pressure is added. In the last 20-25 years the River Danube sediment supply diminished severely as the Iron Gates I and II barrages have been constructed: measurements and computations show that the present day sediment discharge dropped by almost 40 % and the real sediment load brought now-a-day by the Danube into the Black Sea is not larger than 40 million t/y, of which not more than 10-12 % is sandy material taking part at the littoral budget of the delta front zone. The effects of this misbalance added to the impact of other anthropogenic structures and to the rise of the sea level and the increased energy of the coastal sea bring about a very active erosional process of delta-front beaches.

2.3. Risks and Impacts of Climate Change and Sea Level Rise

2.3.1. Impacts on rainfall and water flow and water resources

In accordance with the generally accepted models the most important changes in the climate would be the northward shift of climate zones, the lengthening of summer at the expense of other seasons, the changes of winter cyclonic patterns etc.

The models show that the increase of the mean temperature by 1.5°C in these conditions will determine a decline with at least 10% of the river flow. This decline combined with a decrease of water energy by the rising of the base level would substantially lower the fresh water input into the sea.

Lesser and more erratic precipitation will reduce the groundwater recharge and will misbalance the fresh versus marine water equilibrium. Despite an increased need for irrigation water, the average storage in the reservoirs will fall as a consequence of decreased river flow and precipitation and of increased evapo-transpiration. Reduction of rainfall during the hot summer period might cause deficiency in soil moisture, thus degrading soil structure and fertility and finally affecting the agricultural production.

2.3.2. Impacts of Global Changes and Sea Level Rise on the Danube Delta Territory and on the Coastal Zone.

In response to the forecasted for 2020-2030 SL rise with 20-30 cm, the regression of beaches will, obviously, continue all along the north-western and western Black Sea

coast. Despite a not critical value of SL rise, the impact on the shore zone will be strong enough because of cumulated effect of the SL rising, wind set-up, the shortage of beach feeding by decreased river-borne sediment input (especially of the River Danube) and, of course the anthropic pressure on the coast area. According to Bruun theory and formulas and using the specific data for Romanian beaches we can find average values for coast recession of 3-5 m/yr.

The change of the base energy level will diminish significantly the water and the sediment discharge of the Danube River. A very rough model of the SL rise impact on the Danube water and sediment discharges shows (Panin, 1992):

- a rise of 20 cm of SL will produce a decrease of water discharge by 10% at a free water table slope of 1.143 cm/km and by 26% at a slope of 0.54 cm/km (at the lowest water level), the current velocity will decrease by 12% and respectively 28,6 % and, correspondingly its sediment transport capacity will decline;

- a rise by 30 cm of SL will produce a decrease of the water discharge by 16% for a slope of 1.143 cm/km and by 47% for that of 0.57 cm/km. The mean current velocity will decrease by 19% and respectively 50%.

The reduced fresh water input would influence the general salinity of the Black Sea especially when the general SL will rise continuously. This would involve a greater supply of saline Mediterranean water by the bottom Bosporous current and a decrease of the thickness of the less saline superficial layer of the Black Sea.

At the Danube distributaries mouth zone the penetration of the salt wedge deeper upstream into their course will create a significant disturbance in the processes of transfer of bed-load to the mouth bar and further to the littoral zone. The diminished sediment input would induce a greater deficit in the sedimentary budget of the littoral zone.

As regards the deltaic shore, a rise of SL by 20-30 cm corresponds to an equivalent river water rise with of at least 3-4 hydro-degrees. This means that very extended area of the delta nearby the shore zone would be flooded and also greater flood risks on the entire delta territory will occur (Panin, 1992).

The deltaic coast will be reshaped by marine processes, but in the more vulnerable sections as Gârla Imputita - Câsla Vãdanei, Ciotic-Perisor and Portita-Periboina conditions will be gathered to transform the corresponding intradeltaic depression or lagoon areas into bays. Such risk is greater in the Gârla Imputita - Câsla Vãdanei section which corresponds to the Rosu-Lumina interdistributary depression, in the Ciotic - Perisor section and in the Portita-Periboina zone (corresponding to the lagoon complex Razim-Sinoie), even if here the beach barrier is at present protected by a setback line of embankments limiting losses of beach material by over-washing.

Table 2 – The BLACK SEA COASTS ZONING AND DESCRIPTION

Zone	Section	Length Km	Characteristics, description	Observations on sediment feeding and littoral drift system
1	2	3	4	5
I. Danube Delta	~240.0 km long			The River Danube is the main source of
or Northern	General description: Low,	accumula	tive, mainly sandy coast.	sediments for the littoral drift system. After
Zone of Romanian	Two sub-zones:			the damming of the Danube River at the Iron
Coastal Zone	1. Coastal zone between the	ne main dis	stributaries of the Danube Delta: Kilia, Sulina and St.George	Gates (Iron Gates 1 in 1970 and Iron Gates 2
	2. Coastal zone of Danube	Delta lago	bon system	in 1983) the sandy supply of the beaches by
				the river dropped by $\sim 40\%$.
	1. Kilia (Chilia) Delta	75.0	Progradational trend near the main distributaries of the Kilia Delta.	The sediment drift oriented to the south.
			The Kilia distributary sediment discharge represents almost 50 % of	
			the total sediment discharge of the Danube River. The natural	
			lengthening of the Kilia distributary and anthropic changes	
			occurred along the Danube River and within the delta territory the	
			Kilia sediment supply dropped and the Kilia Delta shape is slowly	
			changing from a lobate to a cuspate-like delta (in the	
			neighbourhood of the main distributaries.	
	2. Baia de Nord (Baia	12.0	At the beginning of our era - strong erosion;	The sediment drift oriented to the south at the
	Musura) - Musura Bay		At present: the erosion is stopped, tendency of clogging and	mouth of the bay. The spit closing the Musura
			transformation in a lagoon by forming of a spit at the entrance into	Bay is formed of sandy sediment load of the
			the bay.	Stary Stambul distributary of the Kilia Delta.

3. Sulina beach	6.0	Before nineties accumulation of sediments;	Local, eddy-like northward sediment drift, due
		At present the accumulation is slacked under anthropic impact.	to the Sulina 8 Km long jetties.
4. South Sulina - Gârla	16.0	Present-day strong erosion (up to 15-20 m/yr);	Southward Danube borne sediment drift
Imputita - Câsla Vãdanei		During the last 2 K.yr. erosion of Sulina Delta - the retreatment of	
		the coast line was over 10-15 Km.	
5. Câsla Vãdanei -	15.0	Present-day strong to moderate erosion;	Southward littoral drift of sediments.
Sf.Gheorghe distributary		At the southern end of the section, nearby the distributary mouth	
mouth		weak erosion or stationary state;	
		The section corresponds to the littoral accumulative formation	
		Sărăturile, formed by juxtaposition of numerous old beach ridges.	
6. Sakhalin island	18.0	An arcuate lateral bar, extending to SW by 300-600 m/y, migrating	Very strong south-westward drift of Danube
		also westward by over-washing.	borne sediments
7. Secondary delta of	~12.0	The secondary St.George delta has three distributaries: St.George	The Gârla Turcului and the Seredne
St.George distributary -		(Kedrilez) – the continuation of the main course of the distributary,	distributaries mouth zones are characterised
Ciotic		the Seredne arm, the smallest, almost clogged and the Gârla	by homopicknal flows into shadowed by
		Turcului arm. Active progradation as result of accumulation of	Sakhalin island are.
		sediments supplied by the distributaries of the St.George secondary	
		delta in the shadowed by Sakhalin island area	
8. Ciotic – Perisor	18.0	Strong coastal erosion; significant lack of terrigenous material, the	Southward unsaturated drift of sediments
		beaches are formed predominantly by organogenic detritus (mainly	
		hashed shells).	
9. Perisor – Peritesca	12.0	The section corresponds to the littoral accumulative formation	Southward active littoral drift of sediments
		Perisor; almost stationary state of the coastline.	

10. Periteasca – Chituc	30.0	The section represents a beach barrier limiting the Danube Delta	Active southward littoral drift of sediments
Nord		lagoons Razim and Sinoie to the sea; this section is characterised by	
		a strong erosion and a very active sediment transfer.	
11. Chituc	26.0	The section corresponds to the littoral accumulative formation	Strong southward drift of sediments
		Chituc; strong to moderate erosion and active sediment transfer.	

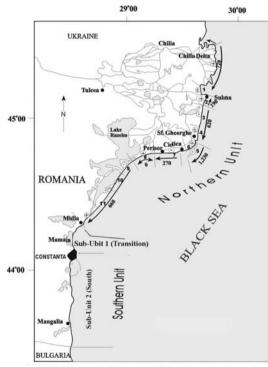


Fig.1 - Romanian Black Sea coast and the longshore sediment transport model (for the Danube Delta coast zone - Northern Unit)

Sediment drift (arrows) and transport rates in thousand of cubic meters per year (figures by the arrows). Circled + and - represent advancing and retreating sections respectively (after Giosan et al., 1997)

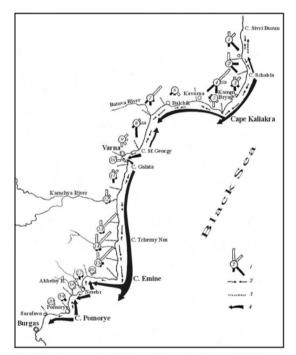


Fig. 3 - Schematic representation of the littoral drift system of sediments on the Bulgarian section of the Black Sea Coast (after Aksenov et al., 1979) Legend: 1 - rosette diagram of the energy components in different sections; 2 - alongshore components of the energy fluxes; 3 - limits of computation sections; 4 - resultant of the alongshore energy fluxes and littoral sediment drift.

II. South Dobro-	~ 175 km total length.			Negative sedimentary budget, local littoral
gean Zone	General description: Erosional coast, with active cliffs and narrow beaches at the feet of cliffs or small			cells
	beach barriers separating la			
	1. Cape Midia - Cape	~ 22	The section represents a transition from the northern accumulative	Local littoral cells of sediment circulation;
	Singol	km	zone to the southern Dobrogean sensu stricto zone, characterised by	general drift system remains oriented to the
			predominantly active cliffs; the section is characterised by large	South; strong anthropogene impact – the
			littoral beach barriers located in front of fossil cliffs, limiting	Midia harbour wave brakers disturb the littoral
			lagoons or littoral lakes.	drift system.
	2. Cape Singol - Vama	~ 60	Active cliffs with barrier beaches limiting lagoons. The cliffs are	Local littoral cells of sediment circulation;
	Veche (Romanian-	km	formed of loess formation laying on Sarmatian lumachelles.	General sediment drift system remains
	Bulgarian border)			oriented to the South. The beaches are formed
				mainly of organogenic material – shell debris.
	3. Vama Veche - Cape	~ 50	Same characteristics as the previous section - active cliffs with	Local littoral cells of sediment dynamics;
	Kaliakra	km	barrier beaches at the Black Sea tributary rivers mouth. Two	from Cape Shabla northward to Cape Sivri the
			subsections: (1) Cape Sivri (Sivri Burun) – Cape Shabla (Šabla)	drift is oriented to the north, with local
			with low cliffs mainly in loess formation, small lagoons at the	convergent or divergent cells. From Cape
			mouth of rivers and sandy beaches; (2) Cape Shabla - Cape	Shabla to the Cape Kaliakra the general
			Kaliakra, the cliffs become higher towards the Cape Kaliakra (up to	sediment drift system remains oriented to the
			60 m highth), the cliffs are formed of limestone.	South. Local differently oriented cells are
				evidenced.

	4. Cape Kaliakra -	~30 km	Almost the same characteristics as the previous section, but without	The general littoral drift is oriented westward,
	Balcic		beaches - active cliffs and massive landslides. The coastal relief is	parallel to the coast, with local littoral cels.
			higher (up to 120 m at Kavarna and 220 m north of Batova river).	The first subsection Cape Kaliakra-Kavarna is
			Accumulative beaches of sandy sediments only at the mouth of	characterised by weaker drift, while the
			Batova River (the sand is supplied by the Batova river)	Kavarna-Balcic subsection has a stronger
				westward drift. The lack of sediments doesn't
				allow beaches to form.
	5. Ekrene	~ 10	The Batova River represents the limit between Dobrogean Plateau	Along the Frangensko Plateau a northward
		km	and Frangensko Plateau. The altitude of the relief in the coastal	oriented weak drift of sediments with local
			zone is higher, up to 290 m. Massive landslides. There are sandy	differently oriented cells. The beaches of
			beaches in the northern part of the section.	Albena resort are formed by convergent
				supply from the Batova River and from the
				material resulted from the erosion of
				Frangensko Plateau coast.
III. Frangensko -	1. Frangensko Pla-	~ 10	Abrasive coast with marine terraces and massive landslides. Very	Northward oriented weak drift of sediments
Stara Planina	teau coast	km	small, mainly artificial beaches.	with local differently oriented cells.
	2. Varna bay	~ 10	The Varna bay is located at the mouth of Provadyiska River that	The littoral drift is convergent from the
		km	represents the limit between Frangensko and Avrensko plateaus.	limiting capes (St.George and Galata) to the
			The section is limited by the Cape St.George (Sv.Georgi) at the	centre of the section. The drift is supplying
			North and the Cape Galata at the South.	enough material for creating a positive trend
				of coastline evolution – the advancement of
				the coastline goes up to 1 m/yr.

	3. Lower Kamchia	~ 18	Between the Cape Galata and the mouth zone of the Kamchia river	The general drift system has a southward
		km	the coastal zone relief has altitudes of 100-130 m; marine terraces	direction, with differently oriented local cells.
			and landslides occure.	The Kamchia River sediment supply is almost
				equally distributed to the north and to the
				south.
	4. River Kamchia-Cape	~ 40	South of the Kamchia River until the Cape Tcherny (first	The general drift system has a well expressed
	Emine. Two subsections:	km	subsection) are located the largest beaches on Bulgarian coastal	southward direction. The beaches are formed
	(1) Kamchia-Cape		zone. In the second subsection, between Cape Tcherny and Cape	of the Kamchia River sediment supply as well
	Tcherny, (2) Stara		Emine, the coast is characterised by land slides, terraces and small	as of the sediments brought by small
	Planina Mountains		beaches. Within this second subsection starts the Stara Planina	permanent or temporary streems.
	coast Cape Tcherny-		Mountains	
	Cape Emine			
IV. Burgas-	1. Nesebar section	~ 40	The Nesebar section extends from the Cape Emine to the Cape	The littoral sediment drift is oriented
Istrandza		km	Nesebar. The Stara Planina Mountains coast continues along this	westward. The Cape Emine protects this
			section. The capes are formed of hard Neogene rocks.	section and large beaches could be formed:
				Sunny Coast beach with coastal dunes up to
				11 m high, Nesebar gulf

	2. Burgas bay.	~ 115	Coasts cut in ancient metamorphic complexes, Jurassic and	The littoral drift system is influenced by the
	Two subsections: (1)	km	Cretaceous rocks, Paleogene and Quaternary deposits. The	high sinuosity of the coastline. The system in
	Cape Nesebar-Cape		subsection C.Nesebar-C.Pomorye is characterised by strong	the C.Nesebar-C.Pomorye subsection is
	Pomorye, (2)Cape		abrasion with small accumulative beaches within small gulfs. The	convergent to the middle of the gulf. In the
	Pomorye-Cape Sozopol		subsection C.Pomorye-C.Sozopol corresponds to the Burgas bay	C.Pomorye-C.Sozopol subsection similar
			sensu stricto and is influenced by negative neotectonic movements	convergent to the center of Burgas bay drift
			of the Burgas synclinorium. This is expressed by the occurrence of	system is reported.
			lagoons – Atanasovsko, Burgas, Mandrensko.	
	3. Mednoridsky plateau	~ 60	This section is limited to the north by the River Tchukalya and to	The general drift system is oriented
	coast	km	the south by the River Dyavolska. The coastline is very sinuous	southward. Local cells generated manly by the
			with small promontories and gulfs where small beaches are formed.	coastline shape.
			Some terraces are also present.	
	4. Istrandza Mountains	~ 85	Coasts in Mesozoic-Cenozoic rocks, mainly granites, diorits,	The general drift system is oriented southeast-
	coast	km	syenits.	ward. Local cells generated manly by the
			The section starts at the Dyavolska River, includes the Bulgarian-	coastline shape (small bays and capes).
			Turkish border on the Rezovska River and continues until	
			Karacaköy. The costline is parallel to the axe of the Istrandza	
			synclinorium. The section is characterised by rocky capes and small	
			gulfs with limited beaches. More than 75% of the length of the	
			section is cliffy.	
V. Pre-	1. Karacaköy -	~ 45	Coasts formed in Cenozoic sedimentary rock complexes that are	The general drift system oriented to the ESE.
Bosphorous zone	Bosphorous (European	km	easily eroded and supply sandy sediments to beaches and littoral	
	side - Rumeli)		dunes (ex. Karaburun dunes). The coastline is almost strait.	

	2. Bosphorous - Sile	~ 40	West Pontian synclinorum. The shelf has an average width of 19
	(Asian side - Anadolu)	km	km.
VI. Western	1. Sile - Cape Kefken	~ 60	Mesozoic and Quaternary deposits
Pontidae zone		km	
(Isfendyar	2. Sakaraya River mouth	~ 115	Coasts formed of Quaternary (alluvial, terraces), Paleogene,
Daglari)	(Cape Kefeken- Cape	km	Mesozoic and Paleozoic deposits.
	Baba)		
	3. Zonguldak section	~ 160	Cretaceous-Eocene flysch and volcanic rocks. Very narrow and
	(Cape Baba – Cape	km	steep shelf (average width of 7 km)
	Kerempe)		
	3. Hosalay section	~ 130	
	(Cape Kerempe – Sinop)	km	
VII. Samsun zone	1. Kizilirmak River Delta	~ 150	
	section (Sinop- Samsun)	km	
	2. Yesilirmak River	~ 120	
	Delta section (Samsun-	km	
	Unye)		
VIII. Eastern	1. Ünye - Cape Yasun	~ 45	
Pontidae zone		km	
	2. Cape Yasun - Harasit	~ 175	
	River - Cape Fener	km	
	3. Trabzon section (Cape	~ 230	
	Fener - Kemalpasa)	km	

IX. Batoumi zone		41.0		
	1. Chorokh River Delta –	19.0	Sediment supply to the coastal zone from the Chorokh River	Littoral drift of sediments directed to the SW;
	Kakhaber Plaine			The sediment discharge of the Chorokh River
				is partly discharged into the deep sea zone
				trough three main canyons situated in front of
				the river delta
	2. Batoumi - Kobuleti	22.0	Section of marine abrasion	Sediment littoral drift towards the North till
				Supsa River mouth.

ASON

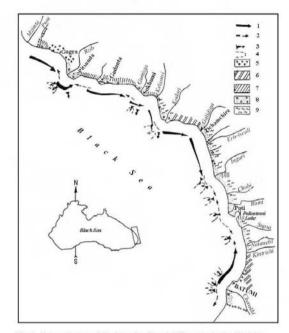


Fig. 4 - Schematic map of the littoral sediment drift system in the Black Sea Coastal Zone of Georgia (after Kiknadze, 1993). Legend: 1 - Longshore sediment drift direction and relative capacity; 2 - Direction of fine grained sediments migration; 3 - Partial loss of sediments towards the deep sea through canyons; 4 - Canyon heads; 5 - Cliffs in hard rocks (metamorphic and eruptive); 6 - Cliffs in conglomerates, sandstones, marts, schists; 7 - Soft rocks and flat relief; 8 - Non-consolideted deposits (pebbles, gravels, sands) forming beaches, terraces, coastal dunes; 9 - Lacustrine and Iagoon deposits.

X. Rioni		115.0	Low, straight coast, with important input of sediments from the	Littoral drift of sediments with variable
Depression zone			rivers debouching in this zone	directions;
				Numerous canyons capturing a part of
				sediments.
	1 Kobuleti - Supsa River	10.0	Very narrow shelf	Northward littoral drift; in front of Supsa
				River there is a very active canyon.
	2. Supsa River - Poti	24.0	Accumulative sandy coast	Southward littoral drift; there is a canyon in
	(Inguri River Delta)			front of the southern distributary of the Inguri
				River Delta.
	3. Poti - Chobi River	19.0	Accumulative sandy coast	Northward littoral drift.
	mouth			
	4. Chobi River - Inguri	23.0	Accumulative sandy coast	Southward littoral drift; a canyon in front of
	River Delta			Inguri River mouth
	5. Inguri River-	39.0	Accumulative sandy coast	Strong Southward littoral drift.
	Ochamchire			
XI. East	186.0 km long.			Southward littoral drift; fine sandy material
Caucasian zone	General description: Erosio	nal coast v	with deltaic progradational sections at the river mouths	migrates inversely to the north.
(Mzimta River -	1. Skurdza gulf-	24.0	Erosional coast	South-eastward littoral drift
Kodori River)	Ochamchire			
	2. Kodori River Delta	15.0	Accumulative coast, sandy and gravely beach material	South-eastward littoral drift of sediments,
				partly captured by a very active canyon
				located in front of Kodori River

	3. Sukhumi bay	19.0	Low clayey coast, Kelasuri River supplies a limited amount of sediments	South-eastward littoral drift		
	4. Gumista River Delta	10.0	Accumulative coast, sandy and gravely beaches	South-eastward littoral drift; a canyon in front of Gumista river mouth.		
	5. Gudauta section	50.0	Erosional predominantly clayey coast with slumps	Strong south-eastward littoral drift.		
	6. Bzyb River Delta and	24.0	Sandy-gravely beaches affected by strong erosion especially within	Strong south-eastward drift of mostly coarse-		
	Pitsunda Cape		the Pitsunda Cape	grained sediments		
				The Bzyb River sediment supply is		
				predominantly discharged towards the deep		
				sea zone through the Acula Canyon located at		
				a few hundred meters offshore the Bzyb River		
				mouth.		
	7. Gagra section	21.0	Erosional coast with cliffs	South-eastward littoral drift		
	8. Psou and Mzimta deltas	23.0	Accumulative sandy-gravely beaches	South-eastward littoral drift		
XII. West Cauca-	286.0 km in length.	1		South-eastward littoral drift		
sian zone	General description: Bay-lik	e in the N	orth, aligned abrasive coast composed of relatively resistant rocks			
(Kudepsta River	(flysch series) in the South.					
- Anapa)	1. Kudepsta River -	11.0	Abrasive coast	South-eastward littoral drift		
	Matzesta River					
	2. Sochi section	13.0	Abrasive coast with significant anthropic impact	South-eastward littoral drift		
	3. Mamayka River -	12.0	Curved abrasive coastal line with sudden beach width variations	South-eastward littoral drift;		
	Loo River					

4. Loo River - Ashe River	43.0	Almost straight abrasive coastline	South-eastward littoral drift; the littoral drift
			starts at Ashe River Mouth
5. Ashe River - Tuapse	23.0	Abrasive coast, sediment deficit	Section with deficit of sediments
6. Tuapse - Aderba River	87.0	Mostly abrasive curved but stable costline;	No littoral drift in this section.
section, subdivided into :		The subsection Gryaznov Bay - Guavga Cape is a bay;	
6.1. Kodosh Cape –		The subsection Sandy Bay is an accumulative one;	
Gryaznov Bay;		Ancient terraces are commonly present.	
6.2. Gryaznov Bay –			
Guavga Cape;			
6.3. Sandy Bay			
6.4. Dzhubga Bay -			
Chugovkopas Cape			
6.5. Chugovkopas Cape –			
Idokopas Cape			
6.6. Idokopas Cape –			
Aderba River			

	7. Aderba River -	66.0	Abrasive coast formed by relatively resistant rocks (flysch series),	Variable littoral drift.
	Myskhako Mountain		with two major bays of structural origin;	
	section, sub-divided in:		In certain sections there are hanging valleys.	
	7.1. Aderba River -Cape			
	Thick			
	7.2. Gelendzhik Bay			
	7.3. Cape Thin-Doob			
	Cape			
	7.4. Novorossiysk Bay			
	8. Sudzhuk Spit -Anapa	30.0	Ancient landslides coast; abrasive coast in flysch series rocks	
	section subdivided in:			
	8.1. Myskhako Mountain			
	- Cape Utrish			
	8.2. Cape Utrish- Anapa			
XIII. Taman-	210.0 km in length. Straight	en , abrasiv	ve coast composed of loose rocks, in certain sections lagoons with	
Kerch zone	barrier beaches			
(Anapa -	1. Taman section, sub-	66.0	Accumulative coast in the eastern part and abrasive in the western	Westward drift in front of the Panagia Cape;
Feodosia)	divided into :		one	Eastward drift in front of lagoons and of the
	1.1. Anapa spit			Anapa spit.
	1.2. Salty Lagoon -			
	Zhelezny Rog Cape			
	1.3. Zhelezny Rog Cape -			
	Panagia Cape			

	2. Kerch strait and	144.0	Straighten complex coast in Cape Takil-Cape Chauda	Northward drift in the Kerch strait;
	peninsula, subdivided into:		subsections;	Westward drift from the Cape Takil to the
	2.1. Kerch strait		Alternating erosional and accumulative zones within the Feodosia	Feodosia
	2.2. Cape Takil - Opuk		Bay	
	Mountain			
	2.3. Opuk Mountain –			
	Chauda Cape			
	2.4. Feodosia Bay			
XIV. South	221.0 km in length.			
Crimean Zone	General description: mounta	inous, abra	asive coast with gulfs	
(Feodosia -	1. Feodosia - Cape Voron,	79.0	Very complex erosional coast, consisting of rocks with different	
Balaklava)	subdivided in:		resistance	
	1.1. Feodosia - Cape		(for ex. the subsection Karadag is formed by volcanic rocks);	
	Kiik Atlama		The beaches are small and formed mainly by pebbly and gravely	
	1.2. Koktebel Bay		material.	
	1.3. Karadag subsection			
	1.4. Meganom Penins.			
	1.5. Sudak Bay			
	1.6. Sudak Bay - Cape			
	Voron			

2. Cape V	Yoron - 43.0	Straighten abrasive coast in rocks of the Tavrik Formation	
Castel 1	Mountain,		
Subdiv	ided in:		
2.1. Cape	Voron - Cape		
Tchabar	n Kale		
2.2. Cape	Tchaban Kale		
- Kuru-V	Uzen River		
2.3. Kuru-	-Uzen River -		
Castel N	Mountain		
3. Castel I	Mountain - 99.0	Eosional coast with landslides (Castel Mounts - Kuchuk Koy	
Balaklava	Bay, subdivided	sections),	
in:		olistolithes and accumulations of blocks (Kuchuk Koy -	
3.1. Caste	el Mountain -	BatiLagoon) and	
Cape Ayu	ı Dag	nonabrasive cliffs and slopes	
3.2. Gurzu	uf Bay		
3.3. Yalta	Bay		
3.4. Cape	Ay-Todor -		
Kuchuk K	Koy		
3.5. Kuch	uk Koy –		
BatiLagoo	on		
3.6. BatiL	lagoon-		
Balaklava	L		

XV. West	283.0 km in length.			
Crimean zone	General description: abrasive	e coasts in	Neogene formations. Straighten and complex coast in tectonic	
(Balaklava -	depressions, in the south-east	tern sectio	n with gulfs	
Bakal)	1. Balaklava - Sevastopol	42.0	Abrasive and ingressive coast in resistant rocks	
	section, subdivided in:			
	1.1. Balaklava Gulf -			
	Kersones Cape;			
	1.2. Kersones Cape -			
	Sevastopol			
	2. Sevastopol - Evpa-	78.0	Straighten, abrasive coast in the southern part of the section;	Eastward littoral drift, only in the E, close to
	toria section, subdiv in:		Straighten, complex coast in the northern part;	the Sevastopol gulf.
	2.1. Bay of Sevastopol-		Coast with lagoons in Kizil Yar - Evpatoria subsection	
	Lukull Cape			
	2.2. Cape Lukull-KizilYar			
	2.3. Kizil Yar - Evpatoria			

3. Tarkhankut Peninsula	163.0	Abrasive coast, with accumulative low sections and sometimes	Eastward littoral drift in front of eastern coast
section subdivided in:		ingressive gulfs	of Tarkhankut Peninsula, especially in the
(1) Donuzlavskoye Lake		* Subsection 3.1. Evpatoria-Donuzlavskoye Lake - low,	subsection 3.2. Tarkhankut Cape -
(2) Donuzlavskoye Lake		accumulative, with lagoons;	Donuzlavskoye Lake
- Tarkhankut Cape		* Subsections 3.2. and 3.6. (the two capes) - abrasive;	
(3) Karadzhinskaya Bay		* Subsections 3.3 and 3.4 - ingressive, with submerged valleys and	
(4) Tchernomorskaya		spits at their mouths	
Bay			
(5) Yarylgatchskaya Bay			
(6) Cape Karamrun- Bakal			

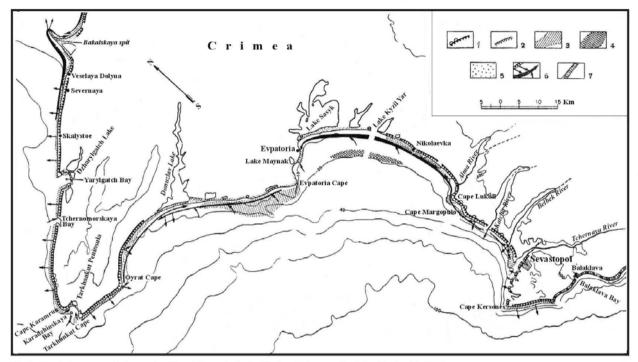


Fig. 5 - Coastal zone morphology and sediment dynamics in the Western Crimea region (after Zenkovich, 1960). Legend: 1 - active cliff and landslides; 2 - fossil cliff; 3 - bench (outcrops of older deposits in the nearshore zone); 4 - lithified deposits; 5 - accumulative littoral bodies; 6 - littoral sediment drift system and its feeding by erosion of coast or of the bottom (the thickness of the arrow corresponds to the intensity of the drift); 7 - non-abrasive cliffs and slopes.

XVI. Karkinit -	618.0 km in length.					
Dniepr zone	General description: Abras					
	1. Karkinit Bay section, 312.0		Abrasive coast in clayey formations - accumulative coast in the	Northward littoral drift in the Bakal spit		
	subdivided in:		3.1. subsection	subsection (3.1)		
	1.1. Bakal Spit			Southward and then northward drift in front of		
	1.2. Crimean side of the			subsection 1.2		
	Karkinit Bay					
	1.3. The landward end of					
	Karkinit Bay					
	1.4. Dzharylgatch Bay					
	2. Dzharylgatch – Tendra	134.0	A system consisting of two long spits, separated by an abrasive	Strong westward littoral drift in front of		
	section subdivided in:		subsection	Tendra spit;		
	2.1. Dzharylgatch spit			Eastward drift from Zeleznyi village to the		
	2.2. Novo-Alekseevka -			end of the Dzharylgatch spit		
	Zeleznyi village					
	2.3. Tendra spit					
	(seaward side)					
	3. Tendra Bay –	172.0	Predominantly accumulative coast with large gulfs and long spits:	Westward littoral drift in front of		
	Kinburnskaya Spit,		* 3.3. subsection - accumulative coast;	Kinburnskaya spit;		
	subdivided in:		* 3.4. subsection - "independent", separated, accumulative spit;	Eastward drift in front of Island Dolgyi		
	3.1. Tendra Bay		* 3.5. subsection - a long spit and an erosive zone			
	3.2. Egorlytzkyi Kut					
	Peninsula					
	3.3. Egorlytzkyi Bay					
	3.4. Island Dolgyi			37		
	3.5. Kinburnskaya Spit					
	and Peninsula					

XVII.	233.0 km in length.				
Northwestern	General description: from				
Black Sea zone	1. Otchakov - Odessa	77.0	Accumulative coast with lagoons and landslides:	North-eastward drift in the western part of the	
	Bay section, subdivided in:Subsection (1) - complex abrasive and accumulative coast; Subsection (2) - abrasive coast with landslides;		Subsection (1) - complex abrasive and accumulative coast;	section and south-eastward drift in its central	
			part; in the Cape Adzhyask -Otchakov		
	(1) Otchakov - Cape Subsection (3) - accumulative coast from the Cape Odessa North to		subsection eastward drift		
	Adzhyask		the port of Odessa (~7.5 km in length); it is a large barrier beach		
	(2) Cape Adzhyask -		limiting the lagoons Kuyalnitsk and Hadjybay, concave in shape.		
	Cape North-Odessa				
	(3) Odessa Bay				
	2. Odessa town section	12.0	Abrasive coast with cliffs and large landslides. The landslides affect	North-eastward drift. The drifted material is	
	(Cape Bolshoy Fontan		all the succession of deposits constituting the cliffs: Pontian	brought by the littoral drift system from the	
	Cape – Odessa Port)		limestones, Meotian marls and Quaternary loess formation. The	coastal section placed to the south. This	
			relief of the coastal zone present three to five terraces formed by	material is represented by fine to medium	
			sliding of large blocks of deposits mentioned above.	sands.	

3. Bolchoy Fontan Cape	44.0	Abrasive coast with cliffs and lagoons:	Strong north-eastward littoral drift; the
- Dniestr Lagoon,		The subsection 1 - cliffs in Pontian limestones, Meotian clays and	sedimentary budget is supplied by the erosion
subdivided in:		Quaternary loess deposits. Sometimes important landslides	of ancient onshore and near-shore and cliff
(1) Bolshoy Fontan Cape		affecting all the succession of deposits occur.	deposits. The drifted material is represented
			by medium to coarse sand and small pebbles
subsection		with land slides and incisions cut by temporary torrents) at its	supplied by the bottom and littoral erosion of
(2) Sukhoy Lagoon –		northern part and of a spit limiting the Dniestr lagoon at its southern	older deposits.
Dniestr Lagoon		end. The spit can be divided in three parts: the northern part (~4 km	
subsection		long and 0.7 km wide), the middle part (~4 km long) and the	
		southern segment (\sim 2.5 km long). Between the central and southern	
		parts lies the only inlet into the lagoon (Tzaregradskyi inlet, water	
		depth about 5 m).	
4. Dniestr Lagoon –	~ 100	Straight coastline oriented to SWS. The coast is formed by loess	Strong south-westward littoral drift supplied
Zhebriany section,	km	deposits, gently deeping to the south. The section is characterised	by the erosion of ancient nearshore deposits
subdivided in three		by the existence of abrasive cliffs and large lagoons. The three	and by the abrasion of cliffs.
subsections:		subsections mentioned in the column 2 can be described as follows:	
(1) Dniestr Lagoon –		Subsection (1) – spit limiting the Dniestr and Budaki lagoons;	
Budaki village;		Subsection (2) - abrasive coast with cliffs in loess deposits;	
(2) Budaki – Cape		Subsection (3) – sandy spit limiting large salty lagoons Burnas,	
Burnas		Alibei, Shagany, Kunduk. The southern end of the subsection is	
(3) Cape Burnas –		formed of juxtaposed littoral bars constituting an accumulative	
Zhebriany village		formation.	
	 - Dniestr Lagoon, subdivided in: (1) Bolshoy Fontan Cape - Sukhoy Lagoon subsection (2) Sukhoy Lagoon – Dniestr Lagoon subsection 4. Dniestr Lagoon – Zhebriany section, subdivided in three subsections: (1) Dniestr Lagoon – Budaki village; (2) Budaki – Cape Burnas (3) Cape Burnas – 	 Dniestr Lagoon, subdivided in: (1) Bolshoy Fontan Cape Sukhoy Lagoon subsection (2) Sukhoy Lagoon – Dniestr Lagoon subsection (2) Sukhoy Lagoon – Dniestr Lagoon subsection 4. Dniestr Lagoon – ~ 100 Zhebriany section, km subdivided in three subsections: (1) Dniestr Lagoon – Budaki village; (2) Budaki – Cape Burnas (3) Cape Burnas – 	 Dniestr Lagoon, Subdivided in: Bolshoy Fontan Cape Sukhoy Lagoon Subkoy Lagoon The subsection 2 is formed of cliffs in loess deposits (sometimes subsection Sukhoy Lagoon – Sukhoy Lagoon – Sukhoy Lagoon – Subsection Subsecti

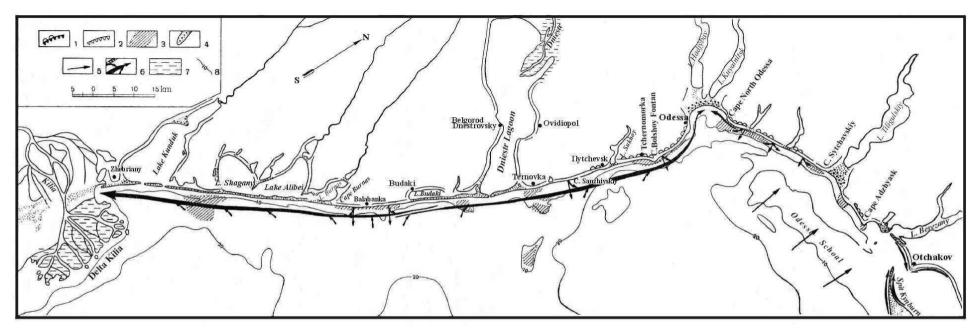


Fig.7 - Coastal Zone Morphology and Sediment Dynamics within the Dnieper mouth zone - the Danube Delta section (after Zenkovich, 1960) Legend: 1- active cliff and landslides; 2 - fossil cliff; 3 - bench (outcrops of older deposits in the nearshore zone); 4 - accumulative littoral bpdies and beach ridges; 5 - supply system of material eroded from the bottom to underwater accumulative ridges; 6 - littoral sediment drift system and its feeding by erosion of the coast or the bottom (the thickness of the arrow corresponds to the intensity of the drift); 7 - delta area; 8 - contour lines in m.

Executive Summary The Black Sea Coastal Zone. State of Erosion, Hazards and Risk assessment and Problems to be Solved

1. General Description

The total length of the Black Sea coastline is over 4 400 km and belongs to 6 states: Bulgaria, Turkey, Georgia, Russian Federation, Ukraine and Romania. The large variety of geomorphologic types of these coasts corresponds to different geological environments surrounding the Black Sea.

The Black Sea coastal zone can be divided in 17 main zones characterised by different geology and morphology, as well as by specific littoral water circulation, sediment drift systems and sedimentary budget.

In a more general approach the Black Sea coast zone could be subdivided into three main morphodynamic categories, with very specific characteristics and behaviour:

1. Low, accumulative coasts mostly related to the main rivers mouth zones. This type of littoral zone consists of sandy complex barrier beaches with strong longshore sediment drift systems; these zones are generally characterised by isostatic adjustments of overloading by rapid accumulation of sediments (subsidence):

the Danube Delta with a very exposed to erosion littoral of about 240 Km.

- the unit River Dnieper liman - Karkinit Bay (total length of about 618 Km). specifically the Kinburn spit - Dolgyi Island section (~ 20 Km) and Tendra spit - Dzharylgatch Island section (~ 137 Km).

- the Taman - Anapa section of about 200 Km long (of which 66 Km are the Anapa spit).

- the Kolkhida (Rioni) Lowland where the rivers Chobi, Rioni, Inguri and Supsa have built up their deltas.

- on the Turkish coast: the deltas of Kizilirmak, Yesilirmak and Sakaraya rivers.

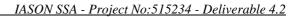
- in Bulgaria, sandy accumulative beaches related to the rivers Diavolska, Kamchya, Provadyiska and Batova, summing about 100 Km.

The accumulative coasts of Anapa section, Kolkhida Depression, the deltaic sections on Turkish and Bulgarian coasts are located within or nearby zones of high relief energy, relatively strong sediment nourishment and general uplifting tendency, so their equilibrium state is not yet very strongly affected.

2. Erosive coasts within lowstanding plateaux and plains, with active cliffs in lœss and lœsslike deposits, sometimes underlyed by older deposits as Pontian limestones, Meotian clays and Sarmatian lumachelles, with very narrow beaches in front of the cliffs:

- the north-western unit of the Ukrainian coast zone (from the northern limit of the Danube Delta to the town of Ochakov (western limit of the Dnieper liman), summing 232 Km.

- the Southern unit of the Romanian coastal zone (Cape Midia - Vama Veche at the Bulgarian border - about 75 Km long), and the Northern part of the Bulgarian coast, from the Romanian border to Caliacra Cape (about 50 Km long).


3. Mountainous coasts, with cliffs, marine terraces, land slides, sometimes with small sandy or gravely beaches. This type of coasts is generally subject of isostatic and orogenic uplift. To this type belong the coast of Crimea, Caucasus, Pontides, Strandza and Staro Planina Mountains, as well as of Frangensko and Avrensko plateaux.

2. Coastal erosion in the Black Sea. Factors controlling the erosional process

The erosion is controlled by:

• *Global and natural factors.* The Black Sea coastlines erosion is strengthened as everywhere in the World Ocean by the global changes and the general sea level rise. The coast erosion will depend on synergetic effect of factors controlling the littoral processes (meteorological regime, wave energy regime, water circulation, sediment supply and drift etc.), global changes and the consequent modification of the energetic level of the coastal sea, general sea level rise and regional characteristics as shoreline morphology, elevation and geologic constitution, subsidence or/ and uplifting neotectonic regime.

• Anthropogenic factors. The coast zone erosion and the state of the coastal sea ecosystems are strongly affected by the anthropic activities, the effect of which is added to the impact of natural factors. The anthropogenic changes of large rivers hydrologic characteristics (water and especially sediment supply, regularisation of floods etc.), men-

made littoral structures as breakwaters, dykes, groins, harbours etc. which are modifying the littoral circulation cells, the uncontrolled use of beach sand, dredging of sand too close to the beaches or within the river mouth bars and many other activities are causing an enhancement of coastal erosion and endangering of the coastal ecosystems.

The first category of coasts described in Chapter 1 (*Low, accumulative coasts*) is the most influenced by the global changes, specifically by the sea level changes and by the changes in the river sediment inputs. The decreasing of sediment supply and changes in littoral sediment drift due to anthropic activities (river damming, hydrotechnical regularisation, littoral structures etc.), especially when the sandy beaches are low, added to the rising of the sea level and the increasing of littoral sea energy could determine in certain conditions a very active and almost continuous recession of the beach line (up to 20 m/y, as it happens in some sections within the Danube Delta littoral). This process is causing land losses, environmental changes and economic degradation of the coastal zone.

The second category of coasts described above (*Erosive coasts within lowstanding plateaux*) could be also affected by erosional processes but the rates of coastline regression do not reach the same values as within the first category (only 1-2 m/y). In this case the erosion affects mostly the narrow beaches in front of the cliffs and activates land-sliding processes. The environmental transformations are less important and consequently the economic losses are lower.

The third type of coasts (*Mountainous coasts*) is the least affected and transformed by the erosional processes. Generally, the littoral of this type is constituted of consolidated rocks, resistant to the eroding process. In front of such rocky littoral there are no beaches or they are very narrow and coarse grained (coarse-grained sand and pebbles). If the development of tourism is intended, artificial beaches and pertaining protection structures as brake-waters, groins etc. must be built. In this case the only economic concern is the maintenance of these artificial beaches.

3. Hazards and Risk assessment

Taking into consideration the above mentioned observations, it clearly appears that the most vulnerable section within the Black Sea coastal zone is the Danube Delta region (almost 240 km long, of which about 75 km represent the coastline of Kilia Delta and belong to Ukraine and 165 km is on Romanian territory).

For the Danube Delta the main factors of risk are the river flooding and the littoral beach barrier flooding by the sea. The climate changes and the related sea level rise represent also elements of risk.

In the last 20-25 years the River Danube sediment input diminished severely as the Iron Gates I and II dams have been constructed: measurements and computations show that the present day sediment discharge dropped by almost 40 % and the real sediment load brought by the Danube into the Black Sea is less than 40 million t/y, of which about 10-12 % is sandy material taking part at the littoral budget of the delta front zone. The effects of this misbalance added to the impact of other anthropogenic structures and to the rise of the sea level and the increased energy of the coastal sea bring about a very active erosional process of delta-front beaches.


4. Priority issues to be developed by future EC research programmes

• Development of a coherent, systematic and sound monitoring system to survey hydrodynamic, geological, sedimentological and geomorphological aspects of coastal dynamics, using modern, comparable and compatible methodology around the entire Black Sea coast. Enhancing the Global Ocean Observing System, Earth Observing System and GEOSS by improving the technical facilities at sea-level and waves measurement stations adding equipment for the measurement of earth vertical movement (CGPS);

• Development of scientific co-operation in all the Black Sea countries and with the Mediterranean science community by creating a research network of excellence regarding coastal erosion, processes, factors, dynamics and coastal protection;

• Creation of a freely accessible common data-base comprising the factors controlling the coastal dynamics coastal erosion and the state of coastal erosion for the entire Black Sea. The database should be permanently updated and upgraded each time when commonly considered necessary;

• Detailed identification of coastal processes mechanisms affecting the critical areas, in order to offer the scientific background for ICZM development.

REFERENCES

- ALMAZOV A.A., BONDAR C., DIACONU C., GHEDERIM VETURIA, MIHAILOV A.N., MITA P., NICHIFOROV I.D., RAI I.A., RODIONOV N.A., STANESCU S., STANESCU V., VAGHIN N.F., 1963, Zona de vărsare a Dunării. Morfografie hidrologică, Bucuresti, Ed. Tehnică, 396 pp.
- BONDAR C., STATE I., ROVENTA V., 1973, Marea Neagrã în zona litoralului românesc. Monografie hidrologică, Bucuresti, IMH, 516 pp.
- BONDAR C., 1989, Trends in the evolution of the mean Black Sea level. Meteorology and Hydrology, Bucuresti, 19, 2, 23-28 pp.
- BONDAR C., 1993, Secular evolution of some components of the hydrological Danube regime and of the mean level of the Black Sea. Proceed.World Coast Conf., 891-893 pp.
- BONDAR C., BUTĂ CARMEN, HARABAGIU ELENA, 1994, Variation and trend of the water, sediment and salt runoff for the Danube River at the inlet in our country, during the period 1840-1992. XVII-th Conf.of the Danube Countries on Hydrological Bases of Water Management, Budapest, 5-9 Sept.1994, 671-676.pp.
- BONDAR C., PANIN N., 2000, The Danube Delta Hydrologic Database and Modelling, *GeoEcoMarina*, Bucharest, 5-6, 5-41pp.
- CRISTESCU T.M., DIACONU V., 1980, Energy aspects of the wind profile structure over the wave field. Cercetari Marine, Constanta, 13, 17-25 pp.
- GASTESCU P., 1986, Modificările tărmului Mării Negre. Univ.Bucuresti, Bucuresti.
- GIOSAN L., BOKUNIEWICZ H., PANIN N., POSTOLACHE I., 1997, Longshore Sediment Transport Pattern along Romanian Danube Delta Coast. Geo-EcoMarina, 2, Bucharest, 11-24 pp.
- HARTLEY CH.A., 1862, Description of the Danube and of the works, recently executed at Sulina Mouth. Proc.Inst.of Civil Engineering, London.
- LEPSI I., 1942, Materiale pentru studiul Deltei Dunãrii. Partea I-a. Bul.Muz.Regional Bassarabia, Chisinãu, 10, 94-325 pp.
- PANIN N., 1976, Some aspects of fluvial and marine processes in the Danube Delta. An. Inst. Geol. Geophys, Bucuresti, 50, 149-165 pp.
- PANIN N., 1983, Black Sea coast line changes in the last 10,000 years. A new attempt at identifying the Danube mouth as described by the ancients. *Dacia*, Bucuresti, N.S., XXVII, 1-2, 175-184 pp.
- PANIN N., 1989, Danube Delta. Genesis, evolution and sedimentology. Rev. Roum. Géol. Géophys. Géogr., Ser.Géographie, Bucuresti, 33, 25-36 pp.
- PANIN N., 1992, Impacts of expected climate change and sea-level rise on Romanian Black Sea shore, especially on the Danube Delta area. *UNEP (OCA)WG* Istanbul, 19, Inf. 8, 11 pp.
- PANIN N., 1998, Danube Delta: Geology, Sedimentology, Evolution. Ass. Sédimentologistes Français, , Fontaibleau, 65 pp.
- PANIN N., 1999, Global Changes, Sea Level Rising and the Danube Delta: risks and responses. GeoEcoMarina, Bucharest, 4, 19-30 pp.

- PANIN N., 2001, Le delta du Danube et l'élévation du niveau de la mer: risques et réponses. Actes Coll.d'Arles 12-13 Oct.2000: "Le changement climatiques et les espaces côtiers -L'élévation du niveau de la mer:risques et réponses", France, 66-71 pp.
- PANIN N., PANIN STEFANA, HERZ N., NOAKES J.E., 1983, Radiocarbon dating of Danube Delta deposits. Quaternary Research, Washington, 19, 249-255 pp.
- PANIN N., MARABINI F., 2004, Coastal Erosion in the Black Sea. Zoning and short description. ISMAR, Marine Geology Branch, Italy – Bologna, Bologna Technical Report No.93, 1-14 pp.
- ROSSETTI C., REY F., (eds), 1931, La Commission Européenne du Danube et son oeuvre de 1856 a 1931. Imprimerie Nationale. Paris. 499 pp.
- SELARIU O., 1972, Asupra oscilatiilor de nivel ale Mãrii Negre la Constanta. Stud. Cercet. Geogr. asupra Dobrogei, Soc.St.Geogr., Fil.Constanta
- SOROKIN I., 1982, The Black Sea. Moskva, Ed. Nauka Acad. Sc., USSR, 216 pp.
- SPATARU A., 1965, Le mouvement des alluvions sur le littoral roumain. Studii de hidraulicã, Bucuresti, IX, 2, 443-464 pp.
- SPĂTARU A., 1984, Research Programme for Coastal Protection Works. Hydraulics Research, Bucuresti, XXX, 159-214 pp.
- SPĂTARU A., 1992, Cercetări hidraulice pentru protectia plajelor. Studii de hidraulică, Bucuresti, XXXIII, 299-314 pp.
- STANCIK A., JOVANOVIC S. et al., 1988, Hydrology of the river Danube. Bratislava, Perioda Publ. House, 271 pp.
- SELARIU O., 1972, Asupra oscilatiilor de nivel ale Mãrii Negre la Constanta. Stud. Cercet. Geogr. asupra Dobrogei, Soc.St.Geogr., Fil.Constanta
- ZENKOVICH V.P., 1956, Zagadka Dunaiskoi Deltî Enigma Deltei Dunãrii). *Priroda*, Moskva, 45, 3, 86-90 pp.
- ZENKOVICH V.P., 1960, Evolution of the Soviet Union Coasts of the Black Sea. Moskva, II,., Akad. Nauk USSR, 215 pp.
- ZENKOVICH V.P., 1962, Processes of coastal development. Akad. Nauk USSR, Moskva, 710pp.

* * *

- MEE D. LAURENCE, 1993, The Black Sea in crisis: The need for concerted international action. Background document, 17 pp.
- BLACK SEA ENVIRONMENTAL PROGRAMME ACTIVITY CENTRE 5, 1995, National ICZM Reports, Krasnodar, Russian Federation.
- KOSYAN R., PANIN N., 1996, Technical Report on Coastal Erosion, Economic Effects and their Valuation, BSEP, Istanbul, Turkey, 70 pp.

B. THE MEDITERRANEAN SEA COASTAL ZONE

1. Introduction

The Mediterranean region comprised of countries such as Turkey, Cyprus, Lebanon, Syria, Israel, Palestinian Authority, Egypt, Albania, Yugoslavia, Slovenia, Croatia, Bosnia Herzegovina. FYROM, Italy, France, Libya, Algeria, Tunisia, Morocco, Spain, Greece, Malta. There are 969,100 sq. mile body of water is approximately 2,300 miles in length, and has a maximum depth of 16,896 ft. The resident population of the Mediterranean coastal states almost doubled over the last 40 years, exceeding today 450 millions compared to 246 millions in 1960. In the 1950s the countries of the European coast represented approximately $\frac{2}{3}$ of the total population, while today only $\frac{1}{2}$ of it and, if the current trends continue, only $\frac{1}{3}$ by the year 2025 and $\frac{1}{4}$ in 2050. Apparently, more than 50% (around 25000 km) of its coastline is heavily urbanised, occupied already by concrete and buildings.

Coastal erosion is one of the most important socio-economical problems that challenge the capabilities of states and local authorities. Whether it is due to natural or anthropogenic reasons, coastal erosion causes significant economical losses, social problems, and ecological damages. The problem of erosion may extend its influence hundreds of kilometres alongshore in the case of large deltaic areas, and may have transboundary implications. In the case of pocket beaches on the other hand, it could be a very local phenomenon affecting only the residents of a nearby town and/or the tourism industry (Ozhan, 2001).

In the Mediterranean, coastal erosion has been a longstanding, large-scale issue around the deltaic areas, such as the deltas of the Nile and Po Rivers, and the smaller deltas like those of the Albanian rivers. It has also been a major issue at smaller scales, especially in the municipal or tourist resort beaches along the relatively more densely developed northern coast, following the flux of people from inland areas to the coast and the boom of the tourism industry (Ozhan, 2001). More than 40 % of beaches in France, Italy and Spain was found to be confronting erosion in the EU project CORINE completed in 1990.

The natural and anthropogenic causes of coastal erosion in the Mediterranean as described by Ozhan [2001] are listed below.

The natural causes of long term coastal erosion are the followings:

- a. Sea level rise
- b. Coastal subsidence due to tectonic events
- c. Climatic changes

- d. Increased vegetation cover over the river watersheds due to climatic changes (causing decreased soil erosion and sediment supplied to the coast);
- e. Sediment sinks (presence of offshore canyons, movement to great depths at steep slopes, wind transport of sand to inland areas)
- f. Changing of river courses and mouths in deltas

Anthropogenic causes of long term coastal erosion are:

- a. Decreasing sediment supply by rivers to the coastal physiographic unit (cutting of the sediment transport by damming the rivers, sand and gravel mining along the river beds, decreasing the sediment transport efficiency by lowering water discharges due to increased fresh water use or due to river works such as bank and bed erosion control)
- b. Erosion control works and afforestation in coastal and riverine watersheds
- c. Decreasing the volume of sand in the physiographic unit (sand mining from the beach and dunes, offshore sand mining)
- d. Alteration of the usual pattern of coastal currents and the associated sediment transport along and across the shoreline, due to man-made coastal structures and urban development too close to the shoreline
- e. Anthropogenic changes made to river courses and mouths in deltas
- f. Maintenance dredging of approach channels and estuarine inlets;
- g. Land subsidence due to anthropogenic effects

Coastal infrastructures, usually lacking an adequate environmental assessment, intersect littoral drift causing important erosive problems and sedimentary imbalances (Liquete et al., 2004). To avoid the ensuing financial losses, beach refilling is a common practice in the touristic Mediterranean seashores. In some countries, such as Greece, this kind of beach nourishment is not common. Nevertheless, in other areas it is a frequently adopted solution. For instance, Italy started filling beaches in 1962 and since then 12 x 106 m³ of sediments have been used; however, the major intervention has taken place in Spain—since 1983 110 x 106 m³ have been added to the seashore, predominantly in the Mediterranean region.

This review considers examples of coasts with "problems" and possible interventions for rehabilitation.

2. The Mediterranean Sea and Coastal Erosion¹

2.1 General information

The Mediterranean coast was perceived as being not vulnerable to sea-level rise, but this past perception was incorrect. The Mediterranean was seen as less vulnerable because of tectonic uplift regions (Cyprus, most of Italy's east coast) and rocky and steep coastlines (Croatia, Turkey, Malta). However, this is much less so on the North-African coast of the Mediterranean and in particular on the Egyptian an Israeli coast located within the Nile littoral cell. Some countries (Spain, Italy) have experience with adaptation to problems in the coastal zone, such as erosion. However the forecasted sea level rise in the present century including the Mediterranean change the previous perception.

The expected sea-level rise due to the "greenhouse effect" for 2100, range between 0.1 m and 0.9 m. This value is a world wide average rise, while the relative regional value may differ significantly due to additional various factors, such as plate tectonics. Sea level measurements carried out at Hadera GLOSS station since 1992 as well as satellite altimetry measurements of the sea level indicate that the sea levels in the Eastern Mediterranean rose at a rate of about 1cm/year in the last 13 years, while a lowering has been measured in the Ionian sea. These changes seem to be due not only to the global warming effect but also due to fluctuations in the formation and circulation of the deep Levantine water between the Adriatic and the Aegean during this period. The figure below (Fenoglio-Marc, 2001) shows the sea level rate of change in the mentioned period over the Mediterranean.

¹ National Institute of Coastal and Marine Management of the Netherlands (2004), A guide to coastal erosion management practices in Europe

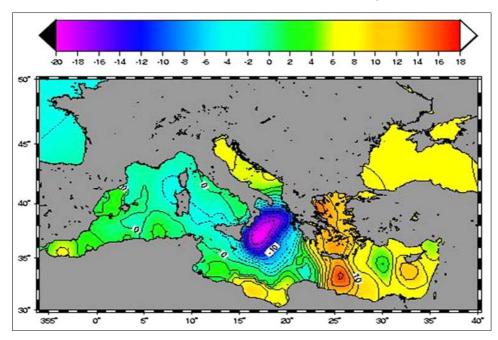
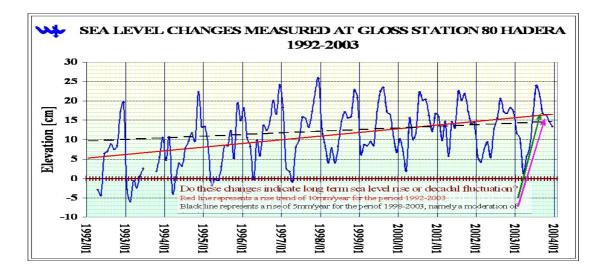



Figure 4 - Sea level changes 1992-2000 based on Topex-Poseidon satellite altimetry (Fenoglio-Marc, 2001)

These sea level changes are confirmed for example by measured sea levels at the Hadera GLOSS station since 1992, shown in the figure 5 below.

The meteorological contribution to sea-level in the Mediterranean was recently assessed for the period 1958 - 2001 within the HIPOCAS project (Gomis et al, 2005) as shown in figure 6 below.

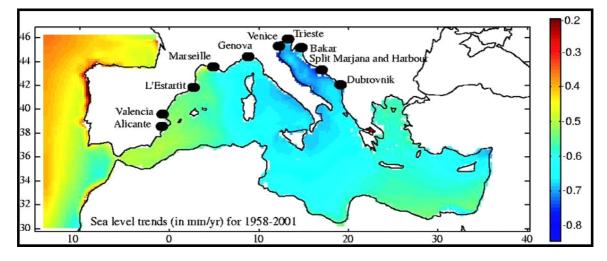


Figure 6 - meteorological contribution to sea-level in the Mediterranean during 1958 – 2001

In particular low laying coastal areas such as major river deltas are particularly sensitive to the impact of sea-level rise (e.g. the Ebro, Rhône and Nile deltas, and the historical city of Venice). Furthermore, there are many, smaller `pockets of vulnerability'. Although these do not always cover large amounts of land or substantial shares of the population, they may be important economic assets (e.g., sandy beaches) or important ecological areas (e.g. coastal wetlands).

Other issues and developments may well be as important or even more than sea-level rise (e.g impact of Aswan dam to retreat of Nile delta). These include also other aspects of climatic change (primarily changes in precipitation, temperature, wind, wave and nearshore currents climate), but also issues such as population and economic growth, and changes in the national and international political situation.

Generally, coastal zone managers in the Mediterranean did not pay a lot of attention to accelerated sea-level rise, even though long term investments are made.

This attitude is presently changing, following recent research activities on European wide extent (e.g. EUROSION project) and Mediterranean wide extent (MAMA project).

2.2 Erosion in the Mediterranean Coastal Regions

All through its history, the Mediterranean region has suffered from the fragility of its ecosystems, and more specifically in the coastal areas where most of the population has always concentrated. Agricultural activities in particular are refrained by degradation and constant risk of depletion of soil and water resources in many sub-regions, and especially in the coastal areas.

When discussing soil erosion or land degradation it is important to bear in mind the four main basic physical factors on which the rate of erosion depends: the erosivity/

agressivity of climate and rainfall, the fragility/erodibility of the soil, the topography, and the amount and density of vegetation cover. In the Mediterranean region, which is a transition zone between the arid tropics and the temperate and more humid climates of the North, most of these factors are of particular relevance:

- The Mediterranean Basin includes an enormous variety of topographic, lithologic and edaphic (predominantly fragile red Mediterranean soils) conditions and landscapes;
- The so-called Mediterranean ecosystems have as major criterion the alternation of hot, dry summer and more humid winter periods thus generating a very typical climatic feature which consists of a marked deficit of precipitation as related to evapo-transpiration during 3 to 6 months of summer period; this peculiarity is to be considered as a highly determinant parameter in the global resources degradation process and in some specific physical desertification mechanisms. Another characteristic is that most of the precipitation comes in violent downpours, which makes the erosivity of rainfall much higher than in temperate zones, when these violent rainstorms follow or coincide with the dry summer periods, thus generating severe erosion damages to the unprotected topsoil;
- The existing semi natural vegetation cover (i.e. vegetation associations such as garrigue, maquis) actually represents degraded forms of the genuine mixed Mediterranean forest. The natural vegetation had to adapt to growth conditions characterised by high summer temperatures that coincide with a severe shortage of water. During these same periods the remaining forest formations are periodically affected by bush fires. The remaining vegetation still establishes large wooded areas, but these appear rather vulnerable to further destruction by fire or illegal timber extraction.

2.3 Coastal Classification

The geology of the Mediterranean is extremely complex and subject of continuous scientific debate. The large scale evolution is dominated by the tectonic convergence of Europe and Africa. The convergence leads to large vertical (uplift and subsidence) and horizontal (displacement of landmasses and basins) movements and active volcanism (Italy Sicily, Greece). The vertical movements differ regionally and even locally, with different rates and styles (abrupt or continuous) of movement. The surface geology also differs strongly

alongshore, with outcrops of various types rocks of different ages as well as a broad range of quaternary sediments. Given the complexity and variation in geology along the Mediterranean shores, this must be considered on a local or regional scale.

There are three major geomorphical settings within the Mediterranean basin; areas with stable margin characteristics, areas with unstable convergent margin characteristics, and areas with extensional margin (rifting) characteristics. Thus the Mediterranean basin is a location of an intercontinental interplate system; with compressional and extensional events occurring within close proximity. Subsidence-related and other vertical displacements are also found in compressional and extensional areas. A few notable events occurred during the Cenozoic which affected the entire Mediterranean; the Messinian "salinity crisis", when the closing off of the

Mediterranean-Atlantic seaway caused complete isolation of the Mediterranean and thus widespread evaporation; and then the Pliocene "revolution", when the channel opened back up, causing reestablishment of marine conditions; and the Quaternary "transgressive raised terraces," of controversial geological origin; among others.

At least, six major basins can be structuraly and morphologically differentiated: Alboran, Liguro-Provençal, Tyrrhenian, Adriatic, Ionian and Levantin

The Central portion of the Mediterranean basin exemplifies the juxtaposition of compressional and extensional tectonic activity in the area. The region bordered to the west by Sicily and to the east by Turkey's west coast (encompassing the Aegean, Ionian, and Adriatic seas) exhibit a particular set of features.

The two broad categories of coastal landscapes (high cliffs and low-lying flat land) are not mutually exclusive, nor restricted to particular geographical areas.

2.4 Hard rock coast

Cliffs and more gently sloping rocky shores are often composed of various types of limestone which form the basis for the karst landscapes of the hinter-land.

2.5 Sedimentary coast

Along the micro-tidal sedimentary coasts in the European part of the Mediterranean sea sandy beaches and dunes are found, frequently with spits and lagoons in low coasts. In Spain, with the exception of some river mouths, coastal low lands are very limited in the Andalucían Mediterranean coast and from Murcia to Cataluña a group of mountains ranges bordering the

sea are setting the edge of this coastline. In France, on the continental Mediterranean shore, most of the dunes stands are located in the Golfe du Lion. The beaches and deltaic coastline is evaluated at 230 km (of which 120 km are "lidos"). The latter are low-lying dunes, the main part of which has been pulled down because of urbanisation processes. In Corsica dunes are not much developed, they often show up as a sandy arrow or a coastal string, and most of them are located on the eastern part of the island. In Italy, continuous belts of sandy beaches are mostly developed on the Adriatic coast of the peninsula.

Deltas and narrow coastal plains, generally occupied by wetlands and lagoons, help to define the landscapes of the Mediterranean coasts. These are present throughout the region and are most extensive in areas backed by mountains where major eroding catchments deliver large quantities of sand and silt to the coast. Short torrents, without water during most of the year, are draining enormous volumes of water in response to heavy local rains, in very short periods. This causes floods which also enhance sedimentary processes. This process combined with the small tidal range help to create some of the largest deltas in Europe: those of the Ebro, the Rhone and the Po rivers. All of these have been modified in some way by human activity whether through changes to the cycle of deforestation in the hinterland, damming of rivers delivering the sediment or drainage and other activities in the deltas themselves. Developed deltaic coast is restricted to the Po delta, which occupies the northern Adriatic. Barrier islands coasts, with associated lagoons and coastal lakes, are characteristics of the territories north of the Po delta, and occur along a coastal stretch of 130 km.

2.6 Definition of Coastal Areas in the Mediterranean Sea²

The concept of coastal area, broader than the coastal zone, understands a distinct transitional system between marine and terrestrial (continental) environments. Figure below illustrates the Blue Plan – MAP definition of Mediterranean coastal areas, based on territorial/administrative coastal units (UNEP-BP/RAC, 1989). For a more detailed insight on definition(s) and practical understanding of the notion, references (UNEP, 1995) and (Vallega, 1999) might be consulted.

² Priority Actions Programme, 2000, Guidelines for erosion and desertification control management with particular reference to Mediterranean coastal areas. Split

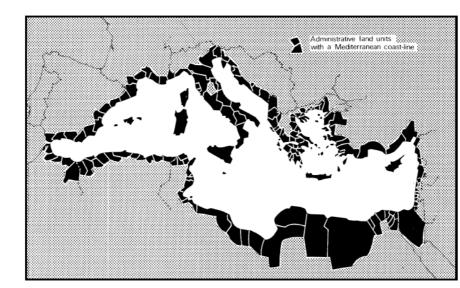
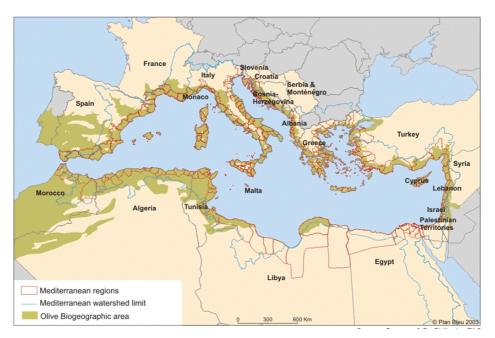



Figure 7 - The Blue Plan – MAP definition of Mediterranean coastal areas³

Figure 8 - Mediterranean Countries and Their Different Limits⁴

The geographical interpretation of Mediterranean watershed(s), however, must be approached in a more flexible way, in particular within the context of these Guidelines.

The following figure presents boundaries of the Mediterranean watershed, with boundaries in very arid areas to be understood as approximate ones. In practice, all relevant upstream

³ Source: Priority Actions Programme, 2000, Guidelines for erosion and desertification control management with particular reference to Mediterranean coastal areas. Split

⁴ Source: www.planbleu.org.

processes and those parts of river basin areas under the influence of the Mediterranean climate and with Mediterranean specific biota should be considered as corresponding to the Convention definition. Faraway areas of large rivers, such as Ebro, Rhone, Po and Nile, are in practice excluded, but not the relevant impacts generated there.

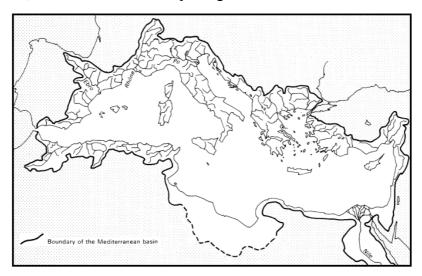


Figure 9 - Boundaries of the Mediterranean watershed⁵

Concerning erosion/desertification related phenomena the geographical context as defined above results with focus on land resources and management, including faraway upstream causes and respective impacts, as well as the adjacent marine environment affected by the resulting pollution, sediment transport and impacts on biodiversity.

2.7 Erosion

2.7.1 Physical processes

The Mediterranean Sea, as depicted in the figure below, is an enclosed basin connected to the Atlantic Ocean by the narrow Strait of Gibraltar (width \sim 13 km, sill depth \sim 300 m) and connected to the Black Sea by the Dardanelles/ Marmara Sea/ Bosphorous system. It is made up of two sub-basins, the Western (WMED) and Eastern (EMED) Mediterranean, connected by the strait of Sicily (\sim 35 km/ \sim 300 m).

⁵ Priority Actions Programme, 2000, Guidelines for erosion and desertification control management with particular reference to Mediterranean coastal areas. Split

Figure 10 - The Mediterranean Sea. Geographic features

The EMED is comprised of four sub-basins: the Ionian, the Levantine, the Adriatic, and the Aegean Seas. The most eastern, the Levantine Basin, merges with the Ionian Sea through the Cretan Passage at a depth of about 1500 m between Crete and the Libyan coast and is connected, to its north, to the Aegean Sea through three relatively shallow passages.

The MED has an annual negative water balance (due to the excess of evaporation (mainly in the EMED) as compared to precipitation, river runoff and Black Sea exchange) causing inflow of less saline Atlantic water through the Strait of Gibraltar. The climatological circulation of the Mediterranean basin is constructed, basically, from a zonal and two meridional vertical circulation belts. The first, is an open and shallow (0-500 m) vertical circulation belt associated with the inflow of the Atlantic water at Gibraltar, which reaches the Levantine basin and is transformed there into Levantine Intermediate Water (LIW). The LIW is an important component of the flow exiting from Gibraltar into the Atlantic Ocean. The other circulation belts are meridional cells driven by deep water mass formation processes occurring in the Northern MED areas such as the Gulf of Lions or the Adriatic (Schlitzer et al., 1991), and (recently) the Aegean Sea (Roether et al., 1996). The deep water formation in such areas which determines the abyssal waters in both the EMED and WMED basins, is affected, if not controlled, by LIW present before formation events (Wu and Haines, 1996). These cells are, thus, interconnected. The Zonal cell is thought to have a decadal timescale (Stratford and Williams, 1997), while the meridional overturning cell has a multi-decadal timescales of 70 to 120 years and ~40 years for the eastern and

western basins, respectively (Stratford et al., 1998). The similarity to the North Atlantic meridional overturning circulation makes the MED an important laboratory for studying air-sea interaction and mass formation.

The figure above shows the schematic of the thermohaline circulation in the basin with the major conveyor belt systems indicated by dashed lines with different color.

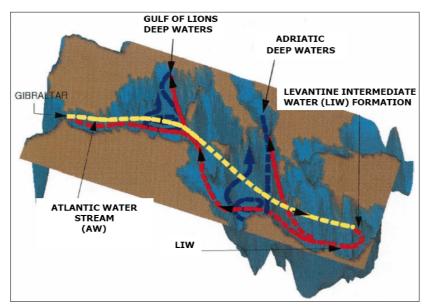


Figure 11 - Schematic of the thermohaline circulation in the Mediterranean

The yellow indicates the AW stream which is the surface manifestation of the zonal conveyor belt of the Mediterranean. The red indicates the mid-depth LIW recirculation branch of the zonal thermohaline circulation. The blue lines indicate the meridional cells induced by deep waters. LIW branching from the zonal conveyor belt connects meridional and zonal conveyor belts. Adapted from Pinardi and Masdetti (2000).

THE MEDITERRANEAN SEA CIRCULATION SCHEMATIC

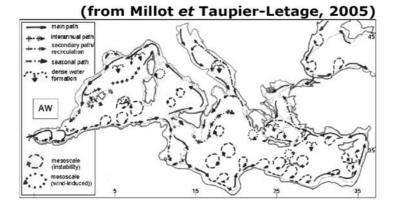
1a Liguro-Provencal-Catalan current (LPC)

1b Gulf of Lyon Gyre 1c Western Corsica Current

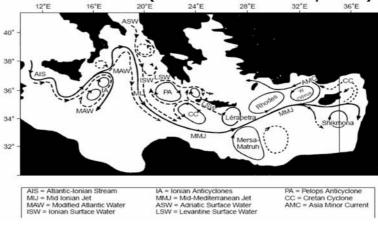
2b Northern Tyrrhenian Gyre 2c Eastern Corsica Current

3 Gibraltar-Atlantic current system

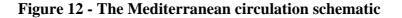
3c Tyrrhenian bifurcation/current 3d Atlantic-Ionian Stream


3f Mid-Mediterranean Jet 3g Southern Levantine current

Gyre


2 Northward Tyrrhenian current and gyres: 2a Northward current and Southern Tyrrhenian

3a Alboran basin Gyres and meanders 3b Algerian current gyres, eddies and meanders


- 5 Western Cretan cyclone
- 6 Western Ionian cyclonic Gyre 7 Syrte Gyre
- 8 Anticyclonic system of the South-eastern Levantine basin
- 8a Mersa-Matruh Gyre system 8b Shikmona Gyre system
- 9 Asia Minor current
- 10 lera-Petra Gyre
- 11 Pelops Gyre
- 12 Southern Adriatic cyclonic Gyre 13 Western Adriatic Coastal Current
- 3e African MAW (Modified Atlantic Water) Current 14 Western Ionian anticyclonic Gyre

MFSTEP Monthly Bulletin N. 13 - September 2005

The Mediterranean is **micro-tidal**, with small variations alongshore due to basin shape. Seas that are almost completely closed have, like lakes, only a very small tidal range, i.e. a small difference in sea level between high and low water. In the Mediterranean tides are only significant in the Gulf of Gabes (to the south-east of Tunisia) and the northern Adriatic. The general Mediterranean astronomical tidal range is about 20 centimetres. In the Adriatic it can reach about 90 centimetres. The latter sea can almost be regarded as a channel, between the straight Italian coast, and the coast of the Balkan peninsula, with many small islands, most of which run parallel to the coast. In the Adriatic Sea not only the tidal range is different: the surface currents are created primarily by the wind. They can reach a speed of three and a half knots.

Water level variations result from climatic influence in the form of atmospheric pressure changes and winds (excluding sea level rise due to the global warming, mentioned in the introduction). The complex basin geometry and the variations in weather hinder the description of one wind- and wave-climate. As to the general climate of the Med: it is windy, with mild, wet winters and relatively calm, hot, dry summers. Spring is changeable, autumn is relatively short. The flow of the air into the Med takes place through gaps in the mountain ranges. In the summer most Mediterranean winds come from the north. A number of special winds occurs. Some of these are: Levanter, Gibleh, Sirocco, Mistral (or Maestrale), Libeccio, Tramontana and Bora.

The size of **coastal cells** (i.e. coastal units with marked physical boundaries that share their sediments) along the Mediterranean varies strongly depending on the local and regional geology and sediment-transport pathways. Sediment sources vary accordingly. Sediment sources can be fluvial, cliff erosion, biogenic production and alongshore redistribution. On certain parts of the Mediterranean the input of biogenic carbonates (shells of various organisms) plays an important role in the sediment budget. The production of biogenic carbonates can be coupled to specific habitats on shoreface and slope, dominated by Posidonia Oceanica (see for instance the Mallorca case study).

The Eastern Mediterranean has been subject to a high sea level rise during the past decade at a rate up to 20 mm/yr in the Levantine basin. Sea level rise of 5-10 mm/yr was also observed in the Algerian-Provencal basin as well as in the Tyrrhenian and Adriatic seas. The north Ionian sea, on the other hand, showed an opposite trend, i.e., a sea level drop of ~-5 mm/yr. Sea

surface temperature trends are highly correlated to sea level trends, which suggests that at least part of the observed sea level change has a thermal origin. The Mediterranean sea level rise observed by satellite altimetry during the last decade is possibly related to the warming trends reported from hydrographic cruises in the intermediate and deep waters of the eastern Mediterranean since the early 1990s, and of the western basin since the 1960s.

The relative sea level rise has important implications for the future of the deltas of the Mediterranean Sea as well as for the future of the sand beaches and coastal cliffs in particular when these are made of cemented sediments, as is the case for the many of southern and south-eastern coasts of the Mediterranean. However the pattern of change is complicated by tectonic movements caused by a variety of influences (e.g. volcanic activity, earthquakes).

When this is coupled with human influences which exacerbate sea level rise, significant problems of erosion, salt water intrusion and flooding can occur. These effects are especially important in the major deltas where a decrease in sediment availability and subsidence due to water pumping or the sheer weight of infrastructure may be some of the factors which give rise to substantial problems of erosion and flooding as is being experienced in several of the major Mediterranean deltas.

2.7.2 Erosion of different coastal types due to driving forces⁶

a. Hard and soft rock coasts

Rocky coasts are widespread in Mediterranean sea (Western Corsica, Riviera, Liguria, Sardinia, Puglia, Cataluña, most of Greek coastland, etc). The erosion rate is generally small and manly caused by wave attack (wave generated by boats and ships can erode unprotected shorelines or accelerate the erosion in areas already affected by natural erosional processes).

b. Microtidal Sedimentary coast

In Greece there are beaches with sand dunes and wetlands too. But the increment of tourism, majority in the small islands, and the construction of hard engineering structures along the coast modify highly the natural processes of erosion.

^{6,29,30} National Institute of Coastal and Marine Management of the Netherlands (2004), A guide to coastal erosion management practices in Europe, Directorate General Environment European Commission

2.7.3 Natural Processes Combined with Man-Made Actions⁷

Driving forces of erosion processes along the Mediterranean coast are pretty similar amongst them, but a high diversity results from geo-morphologial features of each different area (Geodiversity). As a natural process of hundreds of years, erosion is mainly due to winter storms, when most of the material is extracted from beaches and transported elsewhere down the coast line, a fraction of it being lost forever under the bathymetric of -10 m/-15 m and, naturally, replaced by new material from continent shelf erosion transported by rivers.

All these forces reach to a natural equilibrium point where as much material is eroded as it is sedimented. However, the rising of sea level introduces a condition of displacement of that equilibrium which again set different acting forces to work. Lately, since most of the new material remains trapped in dams and reservoirs along Mediterranean river basins, at least one of the acting forces is not present and the equilibrium does not occur naturally. Moreover, quite a number of man-made causes are present throughout the Mediterranean Sea: obstacles to longshore drift (ports, dykes, and so on), and a weakening of the coastal material resilience due to development and urbanization processes³⁰.

So, a lot of erosive problems in the coastline are the evident manifestation of the coastal dynamics disturbances. It is the result of different impacts and processes that can be summarised in the next points:

- Sea level rise whose effects, however slow, can provoke an irreparable impact over the low littoral, specially when the natural adaptation possibilities are hampered by urban settlements.
- The reduction of the sediment sources, specially the ones originated in the river-basins. This reduction is often the consequence of changes related to the catchment area regulation, mainly with dams.
- Amongst direct causes of soil erosion and desertification, deforestation should certainly be considered as the most predominant and ancient. The consequences of deforestation leading to soil erosion which eventually generates the outcrop of stone pavements or soil "hard pans" thus reducing greatly the percolation of water into the soil. The remaining perennial plants can barely survive, and germination in general becomes difficult for both annuals and perennials⁸.
- In the last twenty years there has been a significant increase in the frequency and magnitude of forest fires in the Mediterranean area. Various explanations have been

proposed for the dramatic increase of bush fires in Spain and in Italy: (i) land abandonment and the subsequent vegetative cover changes; (ii) traditional agriculture and grazing practices which include burning to improve soil fertility; (iii) the increased change of forested land into tourist and recreational areas; and (iv) speculative initiatives to convert land for tourism, urbanisation and extensive ranging⁹.

- In Morocco, Tunisia and Turkey, where pastoralism is vital, the reduction of grazing areas due to soil erosion and land use change towards cropping activities initiated a depletion spiral: less total grazing space means higher animal pressure on land which, in turn, generates more intensive land degradation and the progressive shrinking of agricultural land. In North Africa, the evidence of determinant impact of overgrazing on desertification may be inferred from the great amount of shifting sand moving from the steppe areas toward the desert (Rognon, 1999). Turkey is also facing this problem of overgrazing; extension of the grazing period from early spring to late fall results in accelerated land degradation¹⁰.
- The increasing number of barriers to sediment transport: mainly coastal defence and harbour structures. This is often the direct cause of many accounted regressive sand beaches and coastal dunes.
- The occupation and alteration of beaches and coastal sand dunes in most of the cases due to the tourist and urban pressures. These alterations degrade the beach stability, reduce the bulk of moving sediment and increase the erosive problems over urban settlements and roads.
- Non controlled extractive activities in river basins and in coastal sand dunes that contribute to weaken the available volume of sediments. In some regions like Murcia and Almeria greenhouse crops has have a strong influence in this phenomenon for sand coming from coastal dunes has been used as a substrate.

⁹ UNEP/MAP/PAP: Guidelines for erosion and desertification control management with particular reference to Mediterranean coastal areas. Split, Priority Actions Programme, 2000.

¹⁰ UNEP/MAP/PAP: Guidelines for erosion and desertification control management with particular reference to Mediterranean coastal areas. Split, Priority Actions Programme, 2000.

2.8 Erosion due to human interference in the coastal zone¹¹

2.8.1 General

In the Mediterranean, while sea level fluctuations in historical times seem to be largely determinated by local tectonic effects, climate change may have represented an additional factor particularly affecting the most important natural wetlands and coastal lowlands in different coastal areas. Human-induced effects maximise the problems linked to sea level rise, via the following damaging activities:

- -A reduction of river sediment supply.
- -The destruction of natural shoreline defences, such as sand dunes and coastal ridges, for coastal urban development relating to commercial or tourist activities.
- -The excessive pumping of groundwater, which may increase subsidence due to the lowering of piezometric surfaces of confined aquifers, as well as to compaction phenomena.

2.8.2 Damming

Dams prevent natural sedimentation processes by restraining the flow of riverine fresh water, so reduce sediment supply to the coastal system and deltas.

Of the over 6000 large dams in Europe, Spain has the most (1200), followed by Turkey, France, Italy and United Kingdom whom each have more than 500 large dams.

Mediterranean regions are a very clear example of problem related to damming. In fact, the major part of rivers have a torrential regime and so the effects of dams are stronger: in this case, dams have a very short life and detain a lot of sediments that otherwise would reach the beaches. The example of the Ebro delta is highly representative: less than a 5% of the sediment carried before damming is reaching the delta (serra, 199723).

2.8.3 Gravel mining

In stream gravel mining is, together with dams, the main cause of sediment deficit in many rivers. In stream mining directly alters the channel geometry and bed elevation while disrupting the continuum of sediment downstream.

One of the most dramatic examples of wild gravel mining in the Catalan Coastal Ranges can be followed in the not regulated Tordera River (970 km²). There, around $5 \cdot 10^6$ t of sand and

¹¹ National Institute of Coastal and Marine Management of the Netherlands (2004), A guide to coastal erosion management practices in Europe, Directorate General Environment European Commission

gravel were extracted during the sixties and seventies until 1982, when mining was prohibited. This means ten times more the annual sediment yield of the Tordera River, including both suspended and bedload (Rovira et al., 2002). Fluvial sediments were converted to aggregated for construction in the Costa Brava area during the rapid growth of tourism during those decades.

2.8.4 Ports, port extentions and marinas

Large ports (harbours) and small ports (marinas and leisure activities) are one of the main causes of coastal erosion, especially in wave-dominated coasts with important sediment transport drift.

2.8.5 Urban and economic development

Roads, buildings, and other infrastructure can limit or affect the natural response of coastal ecosystems to sea level rise. As populations in coastal areas have grown and economic activity has intensified so a range of often inter-related and conflicting pressures have emerged in the coastal zones focused around agricultural use, industrial and port use, residential use, tourism, coastal water quality and fisheries. These in terms have caused pressure for coastal development and land reclamation around estuaries and lagoons. In France, for example, natural coastal areas are being lost at a rate of 1 per cent a year; 15 per cent have disappeared since 1976, and 90 per cent of the French Riviera is now developed.

2.9 Socio-Economics and Environment

2.9.1 Economic situation

In 1960 the total population of the countries surrounding the Mediterranean Sea was 246 million. In 1990 the population grew up to 380 million and in 2000 it is estimated at 450 million. According to the blue plan data base (see Figure 2-6) It is expected that the population shall grow to 520-570 million in 2030 and might even grow to 600 million in 2050. By the end of the 21st century, the population is believed to grow up to 700 million. A greater part of the population lives in the coastal area. In the past, the population of the countries lying in the North of the Mediterranean formed 2/3 of the total population. At present, they represent half of the population.

Tourism is presently the first source of income and contributes to about 22% of the Bruto National Product (BNP). The Mediterranean Sea areas contribute in total about 1/3 of the international financial returns from Tourism.

2.9.2 Urbanization

Migration rate to the bigger cities is high and has lead to shortages of public services in these cities. These includes water supply, roads, sewage water treatments plants and housing.

2.9.3 Tourism

The Mediterranean sea area is famous for tourism and hosts about 30% of the international tourists. According to estimates, the number of tourists in the coastal area of the Mediterranean Sea is expected to grow from 135 million in 1990 to 235-350 million in 2025. Tourism is seasonal and is concentrated in the coastal areas. Nature Conservation areas in the coastal areas are affected due to the pressure of tourism.

2.9.4 Agriculture

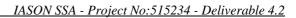
Agricultural activities take place in the limited lowlands lying between the rocky coastal region of the Mediterranean Sea. Almost all types of agriculture and other land-use types are considered as diffuse sources for water pollution and are therefore very difficult to be quantified. Agricultural activities are believed to facilitate soil erosion while increasing the supply of nutrient in the coastal waters of the Mediterranean Sea. Lakes found in the surrounding countries often receive high nutrient levels from the agricultural lands. The rivers Rhone and Po are often affected. The catchments that are seriously affected by high concentrations of nutrients from agricultural practices are found in the following countries: Italy, Sicily , Sardine, Greece, Turkey and Spain.

2.9.5 Fisheries

The total fish landings from the Mediterranean Sea is still higher. The total landings in the Mediterranean countries has increased from 1,1 million tons in 1984 to 1,3 milliton tons in 1995. The fishing techniques practiced have undergone very little changes in the last few years. The number of fishing boats has increased by 19.8 % between 1980 and 1992. The fishing techniques slightly shifted from the use of relatively high labor intensive equipments to capital intensive ones. Big trawlers and multifunctional boats are presently being used but

the average number of trawlers has remained constant since 1982. The by-catches and the number of missing fishing nets at sea have however increased.

2.9.6 Aquaculture


Marine aqua cultural production has increased in some of the countries surrounding the Mediterranean Sea. The production has increased from 78.000 ton in 1984 to 248.500 ton in 1996. Aquaculture is a relative new activity is in the Mediterranean region and is mostly directed towards the farming of shelled animals (bivalves) and fish species including Bass and Red seabream. The effects of this activity on the environment is local and is relatively lesser when compared to the effects registered in Asia or South America.

2.9.7 Industry

Industrial activity (from mining to end production) around the Mediterranean Sea is very common. Especially in the North Western part where the hot spots are concentrated. Big industrial complexes and big sea ports are found in this region. Chemical pollution of the waters is caused by the chemical/petrochemical sector and the metal industries in the area. Other big industrial sectors in the coastal area are: sewage treatment plants and recycling of solvents, metal works, paper production, paint, plastic, textile, and printing companies.

Based on the Exports from the Mediterranean countries, three groups of countries can be classified:

- Countries that are highly specialized and export very few items whilst the rest of the products are being imported. These are the oil producing countries e.g. Algeria, Syrie, Egypt and Libya.
- 2. Less specialized countries that export similar goods exported by other countries in the region. These countries often export goods even under unfavorable market conditions. Some of these countries include: Turkey, Tunisia, Morocco, ex Jugoslavia, Cyprus en Malta. They export clothes, textile and leather. Next to these, these countries can produce specialized products for export. For example: Tunisia produces chemical products including oil and lubricants; Morocco produces chemical products including fertilizers whilst Turkey and ex Jugoslavia produce textile, wool, cotton, paper and cement.

3. Highly diversified exporters and less specialized group of countries. These include the countries of the European Union. They also form the biggest part of the petrochemical industry in the Mediterranean area.

The environmental effects of the industries can either be direct or indirect. Direct effects are found in the cases of sewage water pollution, sea ports and pollution from the industrial complexes which contribute to the formation of the hot spots. Indirect effects are related to the location of the industries. Industries call for a concentration of workers and urbanization along the coastal area. The industries also contribute to air pollution.

2.9.8 Sea transportation

Three main sea routes are known for going to and from the Mediterranean Sea area:

- · Dardanellen/ Sea of Marmara/ Strait of Istanbul,
- · Strait of Gibraltar and
- \cdot Suez canal

About 90 % of the oil transport is done from east to west (Egypt-Gibraltar), between Sicily and Malta and very close to the coast of Tunisia, Algeria and Morocco.

On average 60 accidents take place every year at sea and about 15 ships loose their cargo of chemicals at sea. Most of the accidents take place in the Strait of Gibraltar, Messina, The Canal of Sicily and the routes leading to the Dardanelle. At some of the ports like Genoa, Livorno, Civitavecchia, Venetia, Trieste, Piraeus, Limassol/Larnaka, Beirut and Alexandria, accidents do occur.

3. COASTAL EROSION AT BASIN SCALE¹²

3.1 General

Information, at basin scale, about the coastal zones and their use does not exist for the Mediterranean area. Aside from urban population concentrations, competing land use along the coast comes from tourism, agriculture, fisheries and aquaculture, transport, energy and industry infrastructure, causing acceleration of the modification of the morphology of the coastal system.

Coastal erosion is an environmental threat, related to a combination of human activities such as damming and coastal development, the abandonment of agriculture, and global climate change. Habitat erosion has also occurred mainly due to the competitive use of the coastal zone. Erosion data showed that the 1500 km of artificial coasts can be found in the EU marine area (Balearic Islands, Gulf of the Lion,

Sardinia, Adriatic, Ionian and Aegean) with harbours and ports contributing the major part (1250 km) (EC, 1998). Based on the CORINE coastal erosion data, about 25 % of the Italian Adriatic coast and 7.4 % of the Aegean Sea show evolutionary trends of erosion while about 50 % of the total coastline of the Euro-Mediterranean area considered to be stable.

 Table 6 - Evolutionary trends of some coasts of the European part of the Mediterranean

 Sea for both rocky coasts and beaches as % of coasts¹³

Maritime regions	No information	Stability	Erosion	Sedimentation	Not applicable	Total (km)
Balearic Islands	0.5	68.8	19.6	2.4	8.7	2861
Gulf of Lion	4.1	46.0	14.4	7.8	27.8	1366
Sardinia	16.0	57.0	18.4	3.6	5.0	5521
Adriatic Sea	3.9	51.7	25.6	7.6	11.1	970
Ionian Sea	19.7	52.3	22.5	1.2	4.3	3890
Aegean Sea	37.5	49.5	7.4	2.9	2.6	3408

Source: EC, 1998

^{34,13} EEA (1999): State and pressures of the marine and coastal Mediterranean environment, pp.44 Copenhagen

3.2 Policy Options¹⁴

For the purpose of the Eurosion project, the approach of generic policies as defined by the UK Department for Environment, Food and Rural Affairs (DEFRA) is adopted as shown in the following figure and explained below.

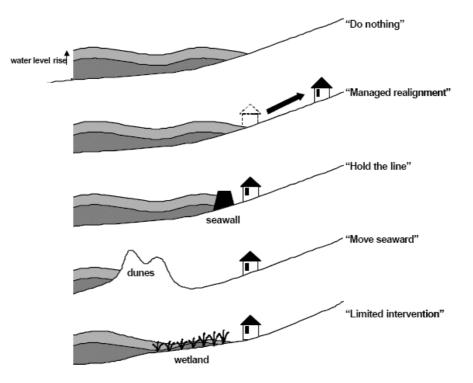


Figure 13 - The five generic policy options¹⁵

3.3 Policy options adopted for Eurosion project

3.3.1 Do nothing

There is no investment in coastal defence assets or operations, i.e. no shoreline management activity.

3.3.2 Hold the line

Hold the existing defence line by maintaining or changing the standard of protection. This policy covers those situations where works are undertaken in front of the existing defences to improve or maintain the standard of protection provided by the existing defence line. Policies

^{36,15} National Institute of Coastal and Marine Management of the Netherlands (2004), A guide to coastal erosion management practices in Europe

that involve operations to the rear of existing defences should be included under this policy where they form an integral part of maintaining the current coastal defence systems.

3.3.3 Move seaward

Advance the existing defence line by constructing new defences seaward of the original defences. This use of policy is limited to those management units where significant land reclamation is considered.

3.3.4 Managed realignment

Identifying a new line of defence and, where appropriate, constructing new defences landward of the original defences.

3.3.5 Limited intervention

Working with natural processes to reduce risks while allowing natural coastal change. This may range from measures that attempt to slow down rather than stop coastal erosion and cliff recessions (e.g. nourishments), to measures that address public safety issues (e.g. flood warning systems, dune and forest maintenance, building restriction in coastal strip).

3.4 Organization and legislation

Administrative bodies dealing with different aspects of coastal management in Southern Europe evolve from port authorities to public works and land planners (tourist administration bodies) to environmental bodies as the coastal policies gain weight.

The following table shows three major issues concerning coastal administration and management: land use planning (frequently on the hands of local authorities), coast management (which includes coastal defense when mentioned) and Integrated Coastal Zone Management.

Table 7 - Administration framework and legislation for major coastal policiesthroughout Southern and Eastern Europe (source: IIMA)

Country	Land Use	Coast	Legislation	ICZM	Comments
	Planning	Management			
Cyprus	Ministry of	Ministry of	N.A.	N.A.	
	Communications	Communications			
	and Works and	and Works;			
	local authorities	Cyprus Ports			
		Authority			
		(pollution)			
France	Conservatoire	Secrétariat	Conservatoire	N.A.	The objective
	du Littoral.	Général de la	du		of the
	Ministère de	Mer, under	Littoral/Loi no		Conservatoire
	l'Équipement,	Premier	86-2 du 3		du littoral is
	des Transports et	Minister.	janvier 1986		currently to
	du	It coordinates	relative à		keep one
	Logement, la	the National	láménagement,		third of the
	Direction du	Policy on the	la		coast without
	Transport	Sea. It promotes	protection et la		any kind of
	Maritime, des	a Comité	mise en		urbanization
	Ports et du	Interministériel	valeur du		("tiers
	Littoral	de la	littoral (1975)		sauvage")
	(DTMPL). Local	Mer.			
	authorities.				
Greece	Ministry of the	Local authorities	Law	Ministry of	
	Environment,	(cleaning,	2344/1940	Environment,	
	Physical	restoration).	"On the	Physical	
	Planning &	Ministry of	foreshore and	Planning &	
	Public	Mercantile	the	Public	
	Works -	Marine	wasterfront"	Works -	
	Directorate of	under the	(1940)	Directorate	

¹⁶ National Institute of Coastal and Marine Management of the Netherlands (2004), A guide to coastal erosion management practices in Europe, Directorate General Environment European Commission

	Physical	National		of
	Planning.	Contingency		Physical
	Local authorities	Plan.		Planning,
				and
				Department
				of
				Nature
				Protection.
Italy	Local and	Erosion control	Legge 31	Not
	regional	is promoted	dicembre	implemented
	authorities	by regional	1982, n. 979,	although
		goverments and	Disposizioni	regional
		financed by	per la	programmes
		national budget.	difesa del	
			mare (1982)	
Malta	N.A	N.A	Developement	N.A
			Protection Act	
			(1992)	
Slovenia			In 1993 the	
			Office for	
			Physical	
			Planning	
			organised a	
			planning	
			workshop for	
			the entire	
			coastal area	
			entitled	
			'Physical	
			Planning of	
			the	
			Coastal Area'	
			(1993)	

IASON SSA - Project No:515234 - Deliverable 4.2

Spain	Ministery of the	Ministery of the	Ley 28/1969,	Ministry of	ICZM has
	Environment,	Environment,	de 26 de	the	been
	D.G. Costas	D.G. Costas	abril de Costas	Environment,	estated as
	(500 m strip)		(1969)	D.G. Costas	apolitical
	and local				willing (April
	authorities				1992). DG
					Costas is to
					lead the
					process.

3.5 Policy Options Implemented in the Mediterranean Sea¹⁷

Throughout the information in the cases of the Mediterranean Sea in 17 situations a policy option is mentioned. In most of them examples of <u>Hold the Line</u> are found (9). In most of these 9 situations the problem is an eroding beach that is being used for tourism. Also, Hold the Line is found where economically valuable activities/structures are found (roads, industry).

For the Mediterranean Sea situations, the <u>Do Nothing</u> option was found 4 times. It is found where the policy is to "preserve and improve the conditions for the natural coastline" (Cyprus – Dolos Kiti). In Malta the coastal engineering works are constructed for maritime related activities and transport services rather than for the purpose of combating erosion. That is why Malta classifies this as Do Nothing (Xemxija Bay). In the French Mediterranean Rhône Delta there is a policy for doing nothing on stable beaches in a nature reserve area.

<u>Limited Intervention</u> consists of mitigating measures to reduce risks while allowing natural coastal changes. In the case studies only 2 examples could be found. In Mallorca nourishments are done when a significant retreat is observed. In Ghajn Tuffieha (Xenxija – Malta) the precautionary measures of prohibition of extraction of dead posidonia oceanica leaves is classified there to be Limited Intervention.

Only in one case study the policy was classified as <u>Move Seaward</u>. In Lakkopotic (Greece) constructing engineering works resulted in beach width increase. A good example of moving seaward can be found in Monaco (no case study).

<u>Managed Realignment</u> is also a rare policy option in the Mediterranean Sea. In the Ebro Delta case study managed realignment is mentioned. There are examples of removal of infrastructure located on the shore (La Marquesa and Pal beaches).

¹⁷ National Institute of Coastal and Marine Management of the Netherlands (2004), A guide to coastal erosion management practices in Europe, Directorate General Environment European Commission

3.6 Strategy

3.6.1 Approach to combat erosion

In the past (until about 1980), hard engineering options were commonly applied. These were constructed only when erosion became a serious problem. As such, a <u>reactive strategy</u> was adopted in general; for example:

At the beginning of the 90s the Maltese Government has started to elaborate some Structure Plan Policies in order to control and reduce the impact of the coastal areas. The principle Structure Plan Policies are the CZM1, CZM2 and CZM3 which manage and plan the use of the coastal areas taking into account the preservation of the environment. There are some more concrete Structure Plan Policies as RCO21 and RCO22 that control directly the erosion in the coastal areas of the Maltese Areas.

Nowadays (from about 1980), however, authorities are more aware of the need to develop sustainable policy plans. This anticipation on the future problems, a <u>pro-active strategy</u>, as in the Ebro delta (Spain):

Some measures have been directed at protection against rising sea levels and over-washing without taking erosion processes into account. These measures were taken as a consequence of the breaking of Trabucador Bar in October 1990 because of a storm. The volume eroded was about 70,000m3 (Sánchez -Arcilla et al., 199721). This event led in January 1991 to the beginning of emergency works, building a 5km dune 1.5m high, 12m at the crown and 24m at the base, fixing it using cane stakes and dune vegetation (Amophila Arenaria, Othanthus Marítima and Elymus Factus).

This action was completed in 1992 with the "Trabucador Bar Protection Scheme", which consisted of extending the above solution along the whole bar, positioning the dune in the interior, beside the bay, with the aim of preventing overwashing by water from the open sea when high waves were produced. The fixing system consisted on one hand of constructing 10 x 10m stake "corrals" of spartina versicolor, and on the other hand of planting dune vegetation (Montoya et al., 199722). The works done on the Trabucador spit were considered two years later as a non-sustainable solution because dunes and vegetation have no dynamic stability (Serra, 1997).

3.6.2 Hard and soft measures

Until about 1980 coastal erosion used to be treated as a problem that could be stopped. There are a lot of examples of major structures built to protect property or a beach. In some cases the effect was positive (Lakkopotic – Greece), but in most of the cases the erosion continued at a somewhat lower rate, but in some cases even increased. Generally, hard measures can be successful if there is a solid understanding of the coastal system. Also due to lack of monitoring data, the level of understanding is often not enough to find the optimal solution right away.

In Marina di Massa for instance, a lot of hard measures were taken to combat erosion. At the point where the coastline was absolutely full of structures, soft measures (beach nourishment) were applied. Still now the soft measures have to be carried out periodically to combat erosion. Sometimes however, hard structures seem to be a very good solution for a densely populated area that is aimed to be protected for flooding.

3.6.3 Measures concerning safety of hinterland

Coastal defence is the general term covering all aspects of human initiated defence against coastal hazards such as flooding and erosion. Coastal defence efforts may be small scale involving relatively small structures or may involve extensive land claims, e.g. by establishing buffer zones.

The relative sea level rise can have important implications for the future of the deltas of the Mediterranean Sea. However here the pattern of change is much more complicated with tectonic movements caused by a variety of influences (e.g. volcanic activity and earthquakes). When this is coupled with human influences which exacerbate sea level rise, significant problems of erosion, salt water intrusion and flooding can occur. These effects are especially important in the major deltas where a decrease in sediment availability and subsidence due to water pumping or the sheer weight of infrastructure may be some of the factors which give rise to substantial problems of erosion and flooding as is being experienced in several of the major Mediterranean deltas.

4. COASTAL EROSION BY COUNTRIES

<u>4.1 Albania</u>

Albania, which lies on the west side of the Balkan peninsula, is mainly a mountainous country. The estimates indicate that in 1992 population was 3.41 million. The Albanian coastline is 470 km long, with many lagoons, sand belts and sand dunes. The Adriatic section of the coastline is under constant dynamic change due to river inputs and the seismic profile of the area, while the Ionian coast is rocky with small beaches and limited sandy areas. Due to the rugged relief of the land, rivers are torrential with a high erosive power. Albania is situated in the Mediterranean climatic belt, with a hot dry summer and a generally mild winter

with abundant rainfall. The country has a rich cultural heritage and diversified archaeological sites which include prehistoric settlements, monuments and necropoles of Illyrian towns, and ruins of castels of the early Albanian Middle Ages¹⁸.

In general, the Albanian coast, unlike some other places, is preserved more or less in its natural state. It represents, as in some parts of the North African seashore, the last remnants of marine habitats of Mediterranean Sea. But on the other hand it is a fact that the uncontrolled human activity has damaged extensively the ecological values of the coastal area Albania. Along the years, huge amounts of sand was removed for construction purposes from the coast of various places, such as Vlora (Cold Water, New Beach) Skelë ,in Golem ,Durrës, in Cape of Seman, In Shëngjin etc .Whole systems of coastal dunes, representing one of the most important elements of the nature environment of coastal zone, have been destroyed, to the detriment of ecological and tourism values. Apart from this, moving away the sand damages also extensively the profile structure of the hydromorphometric balance of the seashore, thus intensifying the erosion process¹⁹.

Compared with other parts of the country, Albania's coast is the most important and valuable in economical terms, both for its environment and development potentialities. Economical and social liberalization of the country has caused a massive and uncontrolled migration of the people towards the coast, and hence an increase of the human pressure and demand on marine and coastal resources. Consequently, threats to marine and coastal biodiversity are evident and becoming more and more significant. Integrated Management of the Coastal Zone and the Action Plan for the Administration of the Coastal Zone should be considered a high priority for Albania in order to ensure a sustainable use of the marine and coastal natural resources, protection of biodiversity and creation of a legal and institutional base for the implementation of the sustainable development strategies.

Background Compared with other parts of the country, Albania's coast is the most important and valuable in economical terms, both for its environment and development potentialities. Economical and social liberalization of the country has caused a massive and uncontrolled migration of the people towards the coast, and hence an increase of the human pressure and

¹⁸ Source: Priority Action Plan (website), CAMP "Albania"

¹⁹ Republic of Albania (2002).

demand on marine and coastal resources. Consequently, threats to marine and coastal biodiversity are evident and becoming more and more significant. Integrated Management of the Coastal Zone and the Action Plan for the Administration of the Coastal Zone should be considered a high priority for Albania in order to ensure a sustainable use of the marine and coastal natural resources, protection of biodiversity and creation of a legal and institutional base for the implementation of the sustainable development strategies²⁰.

Major problems and issues²¹

- Albania ranks as one of the poorest countries in Europe. Low levels of productivity and capital investments combined with shortages of skilled labour are major constraints of the growth.
- There are no restrictions on the use of chemical herbicides, pesticides and fertilisers in agriculture resulting in contamination of rivers, canals and groundwater. Damages to aquatic life and incidents of eutrophication have been reported due to the improper disposal of industrial waste into the aquatic environment and unsustainable agricultural practices.

In 2003 the Albanian authorities formally adopted the principle recommendations of the 1995 plan, which provides a useful conservation and development framework that is still pertinent today. It divides the coastline broadly into three, the northern, central, and southern 1 1995 Albania Coastal Zone Management Plan – Phase One zones, with differentiated strategies for each.2 The north, with a coastline of 54 kilometers, and a population of about 150,000, includes four river mouths and rich delta and coastal wetlands and has potential mostly for ecotourism rather than mass tourism and for improved fisheries resource management. The priorities are improved water quality management and ecosystem conservation.

The central belt, with a coastline of 207 kms, a population of 821,000 and broad stretches of sandy beaches, has greater potential for large-scale tourism and recreation, as long as the environment is well managed. Priorities include, improved water, wastewater, solid and hazardous waste management, and careful land use planning, zoning and development control to protect the region's wetlands and coastal biodiversity. The southern zone belt, with a coastline of 168 kms, a population of about 70,000 and little industrial development, is

²⁰ Source: Violeta Zuna, Eno Dodbiba(2005).

²¹ Source: Priority Action Plan (website), CAMP "Albania"

characterized, except for Butrint in the south, by steep wetlands hugging the shore, spectacular cliffs and grottos and, potential for "high-end", carefully managed tourism combined with protection of the unique scenery and cultural heritage of the area. There is also scope for development of marine tourism.

The Plan also recommends strengthening of the institutional and regulatory framework for coastal zone management and establishment of a permanent coordinating body to support an integrated approach to coastal zone management issues²².

²² Albania Coastal Zone Development and Cleanup <u>http://www-</u> wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/2004/04/13/000104615_20040414093146/Rendered/P DF/Project0Inform1ment010Concept0Stage.pdf

4.2 Algeria

Algeria's coast hosts approximately 12.5 million people (1998), representing 45 % of the country's population. During the summer months tourists increase the permanent population. Algiers, Oran, Annaba, Ghazaouet, Mostaganem, Arzew, Bejaia and Skikda are the most important coastal cities.

Major pollution problems include untreated urban and industrial wastewater, petroleum hydrocarbon slicks and coastal erosion. Most of the urban wastewater is discharged untreated directly into the sea. Although 17 treatment plants for urban wastewater have been constructed in the Algerian coastal zone, only five are in normal operation. This represents approximately 25 % of the total treatment capacity.

Faecal microorganisms are present on most Algerian bathing beaches, exceeding sanitary standards. Also, petroleum hydrocarbon pollution is very common along the Algerian coastline because of maritime oil-shipping lanes that pass close to the Algerian coast.

Out of 250–300 km of sandy beaches in Algeria, 85 % are retreating and losing sand at a rate ranging from 0.30 to 10.4 m/year (NDA Algeria 2004). At Bejaia beach, the sea advanced 345 m from 1959 to 1995.

Similar problems are encountered at Boumerdes, Bou Ismail, Macta and Beni Saf. Few of the sandy beaches remained stable (10 %) and only 5 % of the beaches are progressively accumulating more sand during the last decades. The main causes for this erosion are:

- (i) Feeding of the littoral zone with sediment has greatly diminished recently because sedimentary material is trapped behind dams which were constructed for irrigation or other purposes along rivers and streams. It is calculated that during 1992 approximately 219 million m3 of sediment were trapped behind the 39 principal Algerian dams at a rate of 9 million m3/year (or 16.4 million tonnes/year).
- (ii) Less sediment material is transported along the coastline because harbour infrastructure has often led to sediment entrapment. The total volume of sediment trapped in Algerian harbours is estimated to be more than 20 million m3, and is mainly located in the harbours of Oran, Azrew, Bethioua, Algiers, Bejaia, Skikda and Annaba (78 % of the total sediment volume). Also, due to sediment accumulation, harbours need frequent dredging in order to maintain the necessary depth for navigation purposes.
- (iii) Sand mining for construction purposes takes place at many locations along the coastline at: alluvial deposits of coastal streams (oueds), zones of recent windborne deposition, the upper parts of beaches and even at the under-water level of beaches. Although sand mining from coastal deposits is often a legal process, the excessive removal of sand destroys the coastal ecosystem. Also, illegal operations further increase sand removal rates²³

As a rule, Algeria's Coast may be devided to three main part:

East coast: industrial character but high tourism potential (absence of touristic structures and presence of important biotypes); surface and marine water pollution, coastal erosion, rapid urbanization, and agriculture exploitation.

<u>Algiers' Bay</u>: heavily urbanized and industrialized, affected by untreated wastewaters that bring to marine sediments pollution; lack of urban and industrial development planning.

²³ European Environment Agency (2006).

West coast: tourism character; lack of land use planning and uncontrolled exploitation of sand from beaches $(coastal erosion)^{24}$.

The coastal zone of central part of Algeria face heavy erosion due to man made causes.Regulations exist but implementation of the legislation is made difficult due to the huge demand of sand and gravel to feed ambitious programme of housing and industrial development²⁵.

²⁴ Source: Interdepartment Centre for Environmental Science Research(2003).
²⁵ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).

4.3 Bosnia and Herzegovina

The Mediterranean coast of Bosnia and Herzegovina on the Adriatic is 25 km long, hosting the town of Neum (population 4 300).

The coast of the Neum gulf is very hard and stoned. There is no need for any coastal construction – protection measures, but preserve it is necessary to keep it in its natural state. The additional reasons for not having any destruction phenomenas at the coast are sheltering of the gulf Neum, without strong winds and waves.

Coastal steep slopes don't allow a forming of the gravel beaches, and the areas of stone deposits in the vicinity are very poor, for the purpose of nourishment.

Highway building, as well as the urbanization significantly reduce the possibility of small stoned material depositing towards the coast reduced, so it is the one of the reasons for inexistence of more significant erosion of the coast, and gravel beaches also²⁶.

The pollutants generated in the drainage basins of the major Bosnian rivers of Neretva (from the nearby towns of Konjic, Mostar, Caplinja, Ploce and Metcovic) and Trebisnjica (from the towns of Bileca and Neum) can be carried to the Adriatic Sea affecting its environment.

The major pollution problems are untreated urban wastewater and occasional stockpiles of obsolete chemicals. The areas of concern are:

- ✓ Mostar (population 130 000). Urban and industrial wastewater is discharged into the River Neretva without any treatment and urban solid wastes are dumped without proper management. Barrels of obsolete chemicals are left on both riverbanks. During the war (1992–1995), bombing destroyed electric power transformers leading to oil leakage and contamination of soil and water with PCBs.
- ✓ Neum (population 4 300) is the only urban centre in Bosnia and Herzegovina that discharges its primarily treated urban wastewater directly into the Adriatic Sea. The town population doubles during summer months because of tourism²⁷.

²⁶ Source: UNEP/MAP (2003)

²⁷ European Environment Agency (2006)

4.4 Croatia²⁸

The Croatian coast is mainly rocky and very indented with few alluvial zones. Generally, the coastal strip is very narrow, and is separated from the continental part by chains of mountains. There are numerous islands, which are located in two-three groups and are lying parallel to the mainland. 67 of its 1,185 islands are inhabited. The total length of the Croatian coast is 5,835.3 km, while the length of the insular part is 4,058 km. The coefficient of indentation of the mainland coastline is 3.4. The coastal zone of Croatia (area of 1245 km2) accommodates 1,119,113 inhabitants, which represents 23% of the total Croatian population. Population density in the coastal zone (89.9 inhabitants/km2) is higher than in the continental part (84.5

²⁸ SURVAS (2000).

inhabitants/km2). Historic towns, residential houses, tourist complexes and roads are often constructed in lowlying coastal areas. The main economic activities in the coastal area are marine-related, such as tourism, fisheries and aquaculture and maritime transport.

Since the coastline is mainly rocky, it is not vulnerable in terms of coastal erosion. Limited areas where erosion is present could probably be more endangered due to expected sea-level rise, but overall, this is a restricted and local problem.

4.5 Cyprus²⁹

Cyprus, the third largest island in the Mediterranean Sea, has a coastline of 735 km in length: 295 km under the control of the Republic of Cyprus (40%), 370 km under Turkish occupation since 1974 and inaccessible (50,3%) and 70 km within the Sovereign British Military Bases. This paper refers to the territory under the control of the Republic of Cyprus.

There is not a single legal or planning definition of the coastal zone in Cyprus. The most "popular" definition is the one that suggests the width of the coastal strip to be 2 km inland from the coastline. According to this definition, the coastal strip covers 23% of the island's

²⁹Xenia I Loizidou (2003)

total area. 50% of the population lives and works within this strip where 95% of the tourist industry is located. Tourism is by far the most important economic activity of the island whose coastal zone is and has always been the primary destination for tourists (1999 figures show Cyprus with 2,5 million). With an official target of 3,5 million tourists by 2010 (Cyprus Tourism Organisation) i.e., a planned mean annual growth of 3,4%, it is obvious that the coastal zone is under extremely high pressure.

Coastal Policy framework in Cyprus

In Cyprus, as in many other countries, there is no Coastal Zone Management Policy as a separate and self contained document. Policies for the Coastal zone are included in various sectoral policies which apply to different administration areas. The main policies are:

Land use Policy: Land use planning policy in Cyprus is under the responsibility of the Town Planning and Housing Department, Ministry of Interior and it is controlled mainly by the Town and Country Planning Law, which came into force in 1991. The development in the main urban areas is controlled by the Local Plans and in the rural areas through the Policy Statement for the Countryside. The land uses and the development zones are defined through these two planning tools, which are revised every approximately 4 years.

Tourism Policy: The Cyprus Tourism Organisation (CTO), a semi- Governmental Organisation under the Ministry of Commerce Industry and Tourism is the authority responsible for the Tourism Policy. Several policies and measures for the regulation of tourism development and tourism establishments are in force on the basis of the CTO legislation. As mentioned in the introduction, in 2000 a Strategy for Tourism was prepared by the CTO containing the main strategic goals for Cyprus tourism for the decade 2000 - 2010, aiming in a 40% increase of the number of tourists.

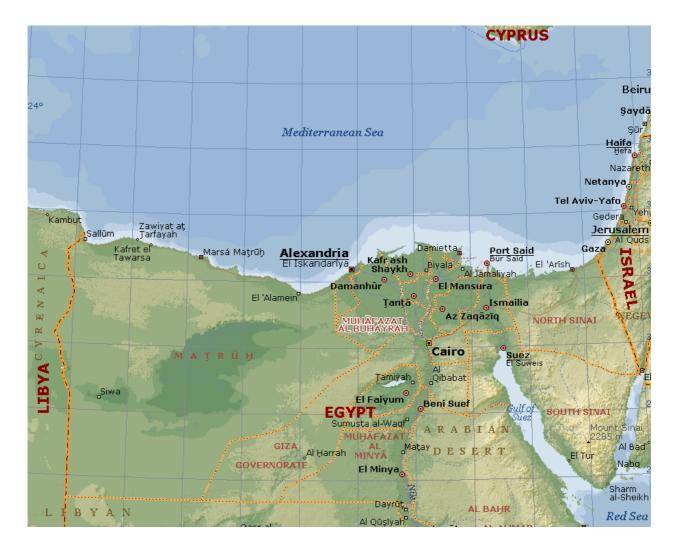
Environmental Policy: The responsibility for the Environmental Policy lies mainly at the Environment Service of the Ministry of Agriculture, Natural Resources and Environment. At this moment, environmental policy in Cyprus is focused on the harmonization with the EU Acquis and the incorporation of EU Directives into the legislation of Cyprus. Environmental policy is expressed in sectoral policies of various natural resources (water, air, forests etc). Except from the Environment Service, more than 10 Governmental Departments and authorities from different Ministries are involved in Environment policies, creating a rather complex system.

Coastal Development in Cyprus – Land uses

The dominant trends for development in Cyprus are:

- Sub-urbanisation, i.e., rapid population growth and urban development in suburbs located at the edges of the main urban areas
- Coastal development, i.e., rapid coastal tourism development

A major characteristic of the coastal development of the last two decades is that formerly agricultural and natural zones at the coastline are converted to tourist development zones after each revision of the land use planning zones every four years. The situation after the last revision of the land use planning zones in 1997-98 was as follows along the coastline:


- Tourist zones cover 105 km, i.e., 37% of the coastline (in length)
- Open areas/protected natural or archaeological areas cover 125 km, i.e., 43%
- Agricultural zones cover 36 km, i.e., 12%
- Residential zones cover 17 km, i.e., 6%
- Industrial zones cover 9 km, i.e., 3%

It is expected that he new revision of land use planning zones will be published by summer 2003 and the percentage of tourist zones along the coastline is expected to rise, with agricultural coastal zones shrinking. A long "coastal wall" of tourist development has been under construction for the last two decades, all along the coasts of the island.

As a result of the policies and the targets of the Cyprus Tourism Organization, the number of beds in the coastal areas of Cyprus has increased seven fold over the last twenty years, i.e. from 12524 beds in 1980 it became 88302 in 2001. At the same time the numbers in inland areas have increased only by 11%, i.e. from 3902 in 1980 to 4358 in 2001. No study on the carrying capacity of the island has ever been conducted.

4.6 Egypt

The coastal zone of Egypt is now under forceful stress. These persuasions are mostly due to the expansions of coastal activities during the last few years. The total coastline of Egypt is about 3700 km. Coastal areas display wide variations in the coastal related activities (e.g. agricultural, Land reclamation, Industry, Fishing, Communications and harbors, tourist activities, secondary housing, Oil and Gas exploration). Some activities are more developed in some areas than the others (e.g. tourist activities in the Red Sea; Oil and Gas in the gulf of Suez; Industry at Alexandria; Fishing in coastal lagoons) (Sammak, 1996). The lower Nile Delta part, between 0-5m elevation, harbours 12 million inhabitants and the important industrial and communication centres. It is also the vital centre of summer tourism and essential recreation outlets for the over crowded cities of the interior. Severe beach erosion is predominating along the coast and will

continue and increase in future especially at the Rosetta and Damietta headlands³⁰.

Results from studies on various aspects of the impacts and possible responses to sea-level rise on the Egyptian coast (Broadus et al., 1986; Milliman et al., 1989; Sestini, 1989; Ante, 1990; El-Raey, 1990; El-Sayed, 1991; Khafagy et al., 1992; Stanley and Warne, 1993) indicate that a sizable proportion of the northern part of the Nile delta will be lost to a combination of inundation and erosion, with consequent loss of agricultural land and urban areas. Furthermore, agricultural land losses will occur as a result of soil salinization (El-Raey et al., 1995).

Khafagy et al. (1992) estimate that for a 1-m sea-level rise, about 2,000 km² of land in coastal areas of the lower Nile delta may be lost to inundation. Substantial erosion should be expected, possibly leading to land losses of as much as 100 km². A very rough estimate of the agricultural land area that might become unusable is 1,000 km² (100,000 ha). With an average land value of US\$1.5/m2, the value of land loss in the lower Nile delta as a result of flooding alone will be on the order of US\$750 million (2,500 million Egyptian pounds) (Khafagy et al., 1992). Outside the delta, erosion is expected to be quite limited. If average erosion were 20 m along 50% of the remaining coast (and assuming land values on the order of 5 Egyptian pounds per m²), the total loss would be about US\$60 million (200 million Egyptian pounds). It has been widely reported that 8 million people would be displaced in Egypt by a 1-m rise in sea level, assuming no protection and existing population levels³¹.

³⁰ Source: Y.N. Krestenitis & I.S. Androulidakis (2006)

³¹Watson Robert T., Zinyowera Marufu C., Moss Richard H. and Dokken David J (Ed.s)(1997)

4.7 France

AUVERGNE Aurillac Le Puy	FRANCE	Grenoble			Voghera Piacenza
Aurillac Le Puy	RHC	Romans-sur-Isè	CRUNE Brianco	Moncalier	Quarto Quarto Alessandria Fidenza
4000	Privas	La Confr	Say 1	Alba _e	APENNINES
Mende	⇒ Montélimar _o		Gap Embrun	PIEDMONT Cuneo Mond	CARET DO ANTICAST CARETAN
	Bolle		Sisteron	t Pelat	Savona Savona
Millau	_∎ Alès _∎ Or.	ange	Digne 2	271	La Spezia
Saint-Affrique	Avignon Avignon	Cavaillon	CE-ALPES-CÔTE D'AZUR		mperia Ligurian Sea
LANGUEDOC-RC Montpellier	Lunel	Manosque Salon-de-Prove	nce Grasse	Niceo Monaco-Ville	
Villeneuve-lès-Maguelone [®]	Aix-en-Pr	ovence	Cannes		
Agde		Marseille	Sain	it-Raphaël	
Narbonne	Gulf of Lion	Toulon	Hyères		439
Canet-en-Roussillor	ו				Calvi Biguglia ⁰
Argelès Plage				Mour	t Cinto 2710 m
CATALONIA					Corte
SPAIN					Ghisonaccia 429
Girona Palamós					Ajaccio Porto-Vecchio
Blanes					Porto-Vecchio
					an c
		Mediterranea	n Sea		Sea .
					SARDINIA 41
					Sassari
					SARDINIA
					Alabara

The total length of coastline in mainland France is estimated at about 5,500 km including some 1,960 km of sandy beaches³². On the Mediterranean coast, the most vulnerable area corresponds to the deltaic plain of the Rhône River, chiefly because of human actions (e.g., shortage of sediment supply as a result of dam construction; river embankments). Coastal erosion, lowland flooding, and ground water salinisation are the main impacts expected from ASLR. The Languedoc coastal barriers will move landward faster than at present, thus jeopardising dense tourist facilities³³.

Coastal defence works are quite significant and most of them comprise the construction of groynes, seawalls and detached breakwaters but nourishment is only a marginal technique adopted to control the erosion France has a coastline bordering both the Atlantic Ocean, with

³² Source: Y.N. Krestenitis & I.S. Androulidakis (2006).
³³ Paskoff, R. (2004).

extreme tidal variations in some locations, and the Mediterranean Sea with little or no tide. The French approach of beach nourishment is traditionally to couple it with hard structures as supporting measures to minimise sand losses and maintenance. In addition, in the most important nourishment projects, the nourishment option was chosen on the basis of the desire to get rid of available sand dredged to maintain navigable depths in a nearby harbour³⁴.

<u>4.8 Greece</u>³⁵

Greek coastal areas are extremely valuable as they concentrate a significant part of the total population, the majority of the main urban centers, a large variety of human activities and most transport and communication infrastructure facilities. Additionally, coastal areas are

³⁴ Krestenitis Y.N. & Androulidakis I.S. (2006).

³⁵ Krestenitis Y.N. & Androulidakis I.S. (2006).

very important and fragile from the ecological perspective as the interface between land, sea and air.

Climate changes are likely to affect both the sources of supply and the rates of loss at beach sand. The rise in sea level is likely to increase the loss of sediment from beaches through inundation or flooding, particularly where the position of the shoreline has been immobilized by heavy coastal infrastructure. Increased rain could mobilize more sediment in the river flood plains and result in an increase in sand supply. But the amount of sand replenishment may be not enough to maintain the beaches, especially because much of the sand and sediment are trapped behind dams and prevented from reaching the beaches.

The supply of sediment to both the beaches and the near shore may also be augmented by more cliff erosion. One effect of the large-scale human development in Greece has been a marked decrease in the supply of sand or sediment from existing natural sources. The construction of dams, the canalization of rivers and the intense coastal development (more than one million houses built in thirty years) have greatly reduced the supply of sediment from rivers by eliminating flows and trapping sediment behind the dams as well as reducing the ability of streams to erode their channels further (Doukakis, 2004).

Recently, an afford has been introduced by the state environmental authorities to include inside the environmental impact assessment reviews regarding maritime structures, coastal erosion modelling and monitoring especially for large coastal infrastructure. In the past, a simple description of the coastal geomorphologic state was enough and forecasting and modelling of the future changes have been implemented rarely. The problems that have been occurred in the coastal regions from this type of approach were significant, so numerical modelling is now necessary not only in future constructions but in order to describe precisely current problems and to propose possible interventions for rehabilitation.

4.9 Israel³⁶

Sedimentological Processes

Coastal developments in the coast of Israel have already induced sedimentological impacts, expresses as coastal erosion, silting of marinas and other protected areas, and cliff retreat. In the last decade, the coastal region of Israel is facing mild but progressive erosion (Rosen, 2002). The majority of the sediments covering its coasts were initially transported via the Nile River to the Nile delta, as indicated by the large content of "nilotic" (quartz material) sand, versus the low content of local biogenic (carbonate material) sand, produced by shells and some local river outflows. Hence, it is obvious that any developments in the cell between

Egypt's Nile Delta to Haifa Bay in the Northern part of the Israeli coast would be influenced by their predecessors upstream the longshore sediment transport flow and would be influencing the coast downstream that flow. Two major anthropological activities according to Golik et al. [1997] were defined to be the major factors responsible for the erosion:

-sand quarrying from the beaches for concrete preparation and filling of land and road developments (stopped by law in 1965)

-Man made coastal structures obstructing the net longshore sand transport brought to the Israeli coasts along the coast of the Sinai peninsula, itself fed mainly from the Nile Delta.

Due to population growth rate and to rapid industrial development, the constructions are estimated to increase soon in size and number, by port developments and expansions at the Nile Delta coast, at Gaza and Ashdod, new marinas and other coastal and marine works, including future artificial islands and/or peninsulas

In the last two decades, there has been increasing evidence that the Israeli coast faces a mild but progressive erosion. Among the facts backing this evidence, one may mention ancient (Neolithic) human skeletons discovered in perfect condition in the late 1980's as well as a few years ago on the sea bottom off Atlith, at about 6m water depth, a 2000 years old merchant wood ship found also in the late 1980's in shallow water (~ 2.5 m water depth) almost undamaged, with much of its goods onboard and many antiques recently discovered in the shallow water off Ashkelon. All these were found in good condition, and could not have survived the destructive power of the sea-waves and currents, would they not have been covered until recently by a protective, thick layer of sand which is no longer there. In former studies (Golik *et al.* 1997) it was indicated that two major anthropological activities

• Sand quarrying from the beaches for concrete preparation and filling of land and road developments, which fortunately was formally stopped by law in 1965;

were identified to be the major factors responsible for the existing situation:

• Man-made coastal structures obstructing the net longshore sand transport brought to the Israeli coasts along the coast of the Sinai peninsula, itself fed mainly from the Nile Delta.

Due to population growth rate and to rapid industrial development mentioned above, such constructions are estimated to increase soon in size and number, by new port developments and expansions at the Nile Delta coast, at Gaza and Ashdod, new marinas and other coastal and marine structures, including future artificial islands and/or artificial peninsulas.

According to Egyptian coastal studies (Fanos *et al.* 1997), within the period starting from the construction of the Low Aswan Dam in 1903 until 1965, when the High Aswan Dam was completed, the Nile Delta retreated some 5 km (in 60 years). However, since then and until 1995 (30 years), another 5 km of the delta coast was removed to sea by accelerated erosion (double), induced by the almost cessation of Nile quartz sediment supply to the Nile delta since 1965.

Hence, the future of the existing Nile littoral cell coast, and in particular the Israeli coast, are threatened not only by the existing erosion due to past sand mining and last century coastal constructions and by new coastal and marine developments mentioned above (if proper remediation steps will not be taken), but also by the cessation of Nile sediment supply. The impact of sediment supply by the Nile River is however estimated not to be significant in this century, because the eroding Nile delta coast is still supplying sand to the Sinai coast, that itself is still rich with sand, which may be transported by the combined natural action of wind, waves and currents to feed the northern part of the Nile cell.

Review of major coastal developments

A list of the coastal structures built along the Nile Littoral Cell starting from Bardawil lagoon on the Sinai coast and ending at Haifa is presented in this section. The listing of the construction of the major structures includes also a description of the resulting sedimentological changes in their neighborhood. The growth pattern of the coastal structures and their resulting morphological changes at the coast are expected to enable a better understanding of the past coastal processes, leading to an integrated sustainable coastal zone planning and development.

a. Historic retrospective

A number of ancient coastal developments were built in this area, of which few have been active until the last centuries, and two are still active today. Their historic presence enabled geologists and archeologists to learn about the sea-level in the last few thousand years in this region and to draw conclusions regarding the very long-term stability of the coast in respect to accretion or erosion processes. We will refer here only to the most relevant site: King Herod's Caesaria Maritima, now Caesarea anchorage. The harbour site, 10km north of Hadera was a wisely designed and built coastal development carried out some 2,000 years ago (20 BC). It was built by Roman engineers at the site of an existing small anchorage belonging to the remnants of the previous Straton Tower city and harbour. It was skillfully made with various coastal engineering features, which even nowadays are considered by

some as novel and indicative of thorough coastal engineering knowledge. Among these one may mention the construction of its breakwaters by caissons filled with sand and topped with pozzolana (an ancient version of cement), a submerged breakwater (prokumatia) in front of the main breakwater to break large waves, openings with gates in the southern part of the main breakwater for water quality maintenance, port flushing and water depth preservation against silting at the entrance. Nowadays the major part of the main breakwater as well as of the lee breakwater are sunken, at the head at about 5m water depth. (Raban 1989) assumed that the breakwaters sank into the sea due to a tectonic fault, which however left intact the land-based part of the harbour. Raban considered the sinking to have occurred gradually, while other researchers estimated a more abrupt sinking. Some later efforts were made to repair the harbour, but it did not return to its previous dimensions. According to archeological findings and historic documentation (Flavius ~78AC, Raban 1989), the harbour coast (Mart and Perecman 1996), north and near to the port was eroded, leading to damage of part of the High Level Aqueduct built by Herod's engineers. This erosion however is quite local. As a matter of fact, both the aqueduct and the port were covered by a thick layer of sand until they were uncovered at the beginning of the 1950's.

The coast at the Caesarea port appears to be at about the same location it was some 2,000 years ago, as confirmed by the aqueduct remains on the coast of Caesarea. (Flemming 1978) advocated this fact because most of the ancient coastal structures at the coast (except Caesarea's breakwaters) are found at about the elevation that one would build such constructions for the present sea-level. This fact may indicate a very long-term coast stability, which seems to have started diminishing in the last half of the 20th century. According to Flemming, the mean sea-level, for some period prior to the 3rd century BC, was higher than that of nowadays by about 1.2 to 1.3m. (Galili and Inbar 1987) estimated that the sea-level some 2000 years ago was about the same as the present one, with the rise and fall that occurred since then. However, they reached the conclusion that the sinking of the area north to Caesaria (and hence also that of the Caesaria breakwaters) must have occurred at more than 10000 BC, hence indicating that also the sinking of the Caesaria breakwaters must have been due to other reasons (e.g. destruction due to lack of maintenance).

b. Coastal engineering in the 20th century

During the 20th century the Mediterranean coast of Israel was impacted by coastal developments as well as beach sand mining forbidden by law since 1965. It is not known exactly how much sand was mined from the beaches, but (Nir 1976) as well as (Golik 1997)

arrived to estimates of about 10 million cubic meters of sand for the period 1948-1965, making use mainly of the records of the Zif-Zif Committee which investigated this mining in 1964. Among the coastal developments which were carried out during the 20th century one can distinguish four major types: (a) commercial ports and fishing harbours, (b) cooling basins for power stations, marinas and anchorages, (c) offshore marine terminals, (d) detached breakwaters, groins and sea-walls.

Given the situation described above one can understand the heavy burden on the coastal zone. It should be also mentioned that about a third of the Israeli coastal length of only 197 km is occupied by various industrial, energy, transportation and military uses, leading to a high public sensitivity for the state of the beaches left for public access. The forecasted population growth combined with the world wide known desire of more than 70% of the people to live near the coast led obviously to serious considerations of land reclamation from the sea, either as seaward land expansions or as artificial islands.

A study on the management of the Israeli coastal sand resources was conducted (Golik *et al.*, 1999) which had the following major results: (a) Beach erosion started along the coastline, due to beach sand mining, long before the construction of the Ashdod port. (b) Anthropogenic activities disturbed the natural balance between the supply (Nile Delta) and removal (to coastal dunes and the open sea) of coastal sand. (c) In the last century, about 20 million m³ of sand (equivalent to about 50 years of natural supply) were removed from the general coastal reservoir due to mining and entrapment behind coastal structures. (d) The negative coastal sand budget has already affected the near-shore area but hasn't yet cause significant general retreat of the coastline. (e) In the future the state of the coast might deteriorate further due to global climate change (sea-level rise and changes in the storm regime).

4.10 Italy³⁷

Italy has 7,500 kilometres coasts of which just under half consists of low lying alluvial beds, particularly exposed to coastal erosion. An idea of the importance that Italy attaches to its problems in coastline engineering comes from the northern Adriatic beaches, holiday destination of more than 90 million tourists from Italy and northern Europe

Beach erosion started at the river mouths and gradually spread to more distant coastal segments, affecting now approximately 30% of the national beaches. In addition, harbours were built on sandy beaches inducing downdrift erosion (Pranzini, 2002). Seventy percent of the Italian sandy seashores show coastal erosion, which is particularly severe near the main river. The most probable cause is a reduced input of sediments by rivers, while harbour or

³⁷ Y.N. Krestenitis & I.S. Androulidakis (2006).

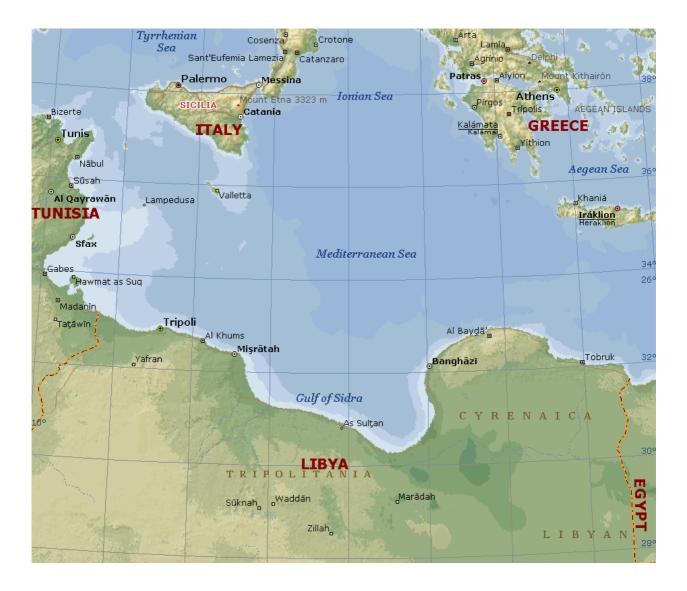
groyne construction can be locally important, modifying the marine currents (Pranzini & Cipriani, 1999). According to the Atlas of the Italian Beaches (Fierro and Ivaldi, 2001), 27% of the Italian beaches which constitute 61% of the total Italian coastline are retreating, 70% in equilibrium, and only 3% prograding.

Almost all nourishment projects (figure bellow) comprise of a combination of sand nourishment and hard structures (Benassai et al. 1997). These different projects may be attributed to one of the following general objectives: 1. Erosion mitigation at local scale. 2. Enhanced recreation at a very small scale. 3. In southern Italy there is often the need to safeguard the coastal railway. These interventions may, almost generally, be regarded as remedial (counter-active) rather than preventive (pro-active) measures, i.e., emergency-type actions are taken as problems are identified along the coast without any long-term planning or overall strategy (Hanson, 2002).

Italy Figure. Beach nourishment sites in Italy (Hanson, 2002)

4.11 Lebanon³⁸

It is estimated that 2.3 million people are resident in the Lebanese coastal zone. This zone is very narrow and lies between the west mountainous chain and the sea. Major pollution problems are untreated urban wastewater, solid wastes and coastline urbanisation. Beirut, Tripoli, Sidon, Jounieh and Tyre are the major coastal cities. Urban wastewater is discharged into the sea untreated (44 000 tonnes of BOD5 per year) as no municipal WWTP is in operation in the country. Furthermore, beachfront dumping sites of municipal and industrial solid wastes constitute an important LBS. The major factor for the physical alteration of the coastal zone is urbanization since most of the coastal fringe (at a width of 8 to 10 km) is built-up. Areas with major environmental problems include:


³⁸ European Environment Agency (2006).

- ✓ Tripoli area: urban and industrial wastewater, harbour and coastal dumpsites contaminate the coastal zone;
- ✓ Beirut area: untreated urban and industrial wastewater is discharged directly from outfalls and through the Al Ghadir River. The coastal area is also affected by leachates and litter from Burj Hammoud and Normandy dumpsites;
- ✓ Mount Lebanon area hosts industrial activities at Jbeil, Jounieh, Halat, Zouk Mosgeh, Antelias, which discharge their wastewater into the sea;
- ✓ Sidon: urban and industrial wastewater, solid waste dumping.

4.12 Libya³⁹

Libya's coastal zone hosts 85 % of the country's population and most of its industrial, agricultural and tourist activity. There are no natural rivers in the area, only wadis (temporary dry rivers) which transport sediment, litter and pollutants from inland to the sea during storms. With the exception of the larger coastal cities, most towns have no effective sewer system. Therefore, discharge of wastewater into the sea is minimised.

Major environmental problems in Libya are oil pollution near terminal facilities as well as untreated urban and industrial wastewater from the bigger cities. Urban solid wastes are often disposed of in empty plots within the town limits, which create serious health problems. Tripoli and Benghazi: urban wastewater partly treated;

³⁹ European Environment Agency (2006).

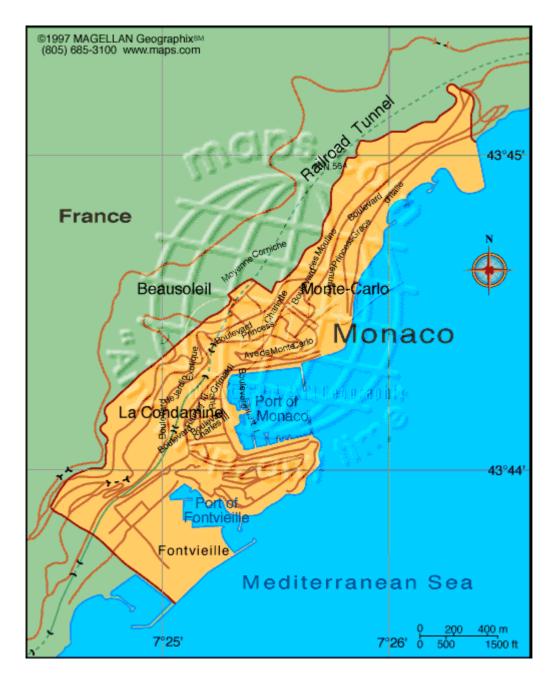
- ✓ Az Zawiya: petroleum hydrocarbon contamination from the oil terminal and refinery with a production capacity of 120 000 barrels per day;
- ✓ Zuwarah: industrial wastewater (chemical industries) and urban wastewater;
- ✓ Misratah: urban, industrial (steel) and harbour facilities;
- ✓ Al Khums: power generation plant, oil terminal and cement plant;
- ✓ Sirt: urban wastewater.

Away from the cities, a significant part of the Libyan coastline is under no serious human stress because in many areas there is no paved access to the seashore.

4.13 Malta⁴⁰

Structurally Malta is divided into two major blocks by the Victoria Lines Fault, which down throws north and runs from the west coast at Fomm ir-Rih to the east coast at Madliena Tower. The northern block is characterised by a series of normal faults striking ENE, which divide the region into horsts, grabens and half grabens. In contrast, the southern block is characterised by less pronounced faulting striking NE. The Maltese Islands have an

⁴⁰ Source: Krestenitis Y.N. & Androulidakis I.S. (2006).



undulating tilt towards the northeast thus producing two types of coastline, a gently sloping rocky coast on the northeastern side and a steep cliff-dominated coastline on the southwest and west side of the Islands. Superimposed on this general dip are the effects of faulting and differential erosion. The structural properties of the various rock layers influences the rate of erosion under the action of wind, waves and rain and thus give rise to different formations that include:

- Wave cut notches or wave cut platforms at the base of the Lower Coralline Limestone cliffs (often extending below sea level).
- Smooth gently sloping coastal platforms on Globigerina limestone shores.
- Bays where clays and marls have been eroded away at a fast rate.
- Boulder screes (both on land and in the sea) where erosion of the blue clay undermines the upper coralline limestone cap above it forming the typical drum coastline.
 -Karstland.

<u>4.14 Monaco⁴¹</u>

Monaco has a population of 33 000, and a high population density (16 500 people per km2). The city wastewater (urban and industrial) is discharged into the sea through submarine outfalls after treatment.

Furthermore, there is also primary treatment of storm water before it is discharged into the marine environment. Solid wastes are recycled (glass, paper, batteries, lubricating oil) or incinerated, reducing their weight by 70 % before sanitary disposal. Special industrial wastes

⁴¹ Source: European Environment Agency Report (2006).

are also treated (Principauté de Monaco, 1997). The greater part of the coastline of Monaco is urbanised.

<u>4.15 Morocco</u>⁴²

The Mediterranean coast of Morocco has witnessed increased urbanisation over recent years. From 1977 to 1994, medium-sized coastal towns grew from 16 to 30, and small towns from 2 to 14. The major urban centres, which are also the most polluted areas on the Mediterranean coast, are: Tangiers (population 640000), Tetouan (333000), Nador (149000) and Al Hoceima (65000).

The main environmental problems are caused by urban and industrial wastewater, maritime traffic and coastal urbanisation. For example, construction, sand extraction and erosion have

⁴² Source: European Environment Agency Report (2006).

resulted in serious stress on the beaches. This has led to the disappearance of seven out of 47 beaches in recent years. The major beaches under stress are in Tetouan, Mdiq, Restinga-Smir, Al Hoceima, Cala Iris, Nador and Essaidia. Due to bacteriological contamination, 17 % of recently surveyed beaches were not in conformity with sanitary standards for bathing. Maritime traffic is one of the major concerns for oil and hazardous compounds contamination. It is estimated that 60 000 ships pass through the straits of Gibraltar yearly, including 2 000 ships carrying chemicals, 5 000 oil tankers and 12 000 gas tankers. Major problems in the coastal areas which are also urban centres are listed below:

- Tetouan: industrial and urban wastewater, sand erosion, eutrophication and toxic algal blooms;
- ✓ Nador: urban and industrial wastewater, solid wastes, sand erosion;
- ✓ Al Hoceima: urban and industrial wastewater, solid wastes, sand erosion.

4.16 Palestinian Authority (Gaza Strip)⁴³

The Gaza Strip is 42 km long and 5.7–12 km wide. It hosts a 1 million population with strong growth potential as 50.2 % of the inhabitants are less than 15 years old. The area is highly urbanised, including the towns (Gaza, Khan-Yunis and Rafah) and 54 villages. Poorly treated municipal wastewater is the main source of pollution of the coastal zone of Gaza Strip. Several small and medium industries also contribute to the pollution of the coastal area. More than 20 individual sewage drains end either on the beach or a short distance away in the surf zone. These drains carry mainly untreated wastewater (only 40 % of the wastewater generated in the Gaza Strip is properly treated). Furthermore only 60 % of the population is served by sewerage systems.

⁴³ European Environment Agency (2006)

The major areas of concern are:

- Gaza city: urban and industrial wastewater (fuel, asphalt, clothing, mechanical workshops, printing, plastic, tiles);
- Khan Younis town: urban and industrial wastewater (fuel, cement, food, clothing, mechanical workshops, printing, plastic);
- Rafah town: urban and industrial wastewater (fuel, cement, clothing, mechanical workshops, metal, wood);
- Dayr El-Balah town: urban wastewater.

4.17 Serbia and Montenegro⁴⁴

⁴⁴ Source: European Environment Agency Report (2006).

The Mediterranean coast of Serbia and Montenegro has a population of 409 000. Four percent of the total population of the country reside in urban areas. The major towns are: Bar (population 47 000), Herceg Novi (37 000), Kotor (23 000), Ulcinj (21 500), Budva (18 000) and Tivat (15 600) (Census 2003 — including refugees). The summer population of these towns increases because of tourism. Owing to the discharge of untreated urban wastewater, eutrophication problems and microbial pollution can be detected in the vicinity of coastal towns (west beaches of Bar, Herceg-Novi Bay, Kotor Bay, Port Milena [Ulcinj] and Tivat Bay). Similar problems exist at Velika Plaza and Ada at the river mouths. It is estimated that 50 % of the produced solid wastes in the coastal area are being collected and disposed of in open dumps without sanitary treatment. Quarrying of stones occurs near the town of Bar and Platamuni peninsula. This causes dust generation and alteration of the coastal morphology. Land erosion signs are detected in all the coastal areas.

The major pollution problems are untreated urban wastewater, eutrophication of coastal waters and uncollected solid wastes. The areas of concern are:

- ✓ Bar: urban and industrial wastewater (food);
- ✓ Herceg Novi: urban and industrial (shipyard, harbour and food);
- ✓ Kotor: urban and industrial (metal, chemicals, petroleum storage and harbour);
- ✓ Ulcinj: urban and industrial (salt and harbour);
- ✓ Budva: urban and harbour;
- ✓ Tivat: urban and industrial (shipyard and harbour).

4.18 Slovenia⁴⁵

Marmolada Grea	eglians Fonteopa	Fusine in Valromana	AUSTRIA	SLOVENIA
reson Sotto Invillino	Tolmezzo Tamaroz	Gora Bled	A R A W A N Tržič	K E N Bele Vode
Taibon Huda caa Erto Lesis GIULIA	Gemona del Friuli	Soča Bohiniska N.P. Češnjica	Bašelj Še Visoko Ravne pri	ntjanž, velenje Gomilsko Levec
Tiser Ponte nelle Andreis	Buia Logie Bohi Mels Tarcento A.J.	njska Bistrica Brdo	Kranj Radomlje Kam	nik Prebold Celje
roce Sedico	assacco Tavagnacco Tol Remanzacco a. Ave	cerkno [®] °podlani	Brode Trzin, Dom: Sče Golubovci	žale Radeče
Revine PORDENONE Bless	sano, Udine del Friuli del Friuli	Banjšice "Ĝrgar	Ljubljana ^O Golišč	če [°] [°] Polšnik 46° Višnja Ravne
Tarzo Conegliano San Vendemiano	Palmanova	Gorizia Idrija Vrnr Gorizia Predmeja	E70 Želimlje Šmi	Gora Gorenje Selce
Grocetta del Montello, Pasiano di Port	lenone A4 Pieris Or	Ajdovščina Erzelj	M10 Zavrh Pibnica	nberku E70 Novo Mesto
TREVISO Ponte di Piave Por	salta di UDINE di O togruaro Aurisin	a Brje pri Komnu a	Postojna Dane	[°] Žvirče [°] Podhosta Blate _{Stari} Breg <i>V</i>
Modiana San Donà VENEZIA	Grado Grigna Lignano		Kozarišče Prezid Ko	čevje
Vigo di Cadere , Compositione , Perton di Sauris Sotto Invillino FRIULIAN Muda Fae Erto , Belluno Tiser Ponte nelle Andreis Belluno Troce Sedico Spilimbergo Croce Sedico Spilimbergo Croce Sedico Spilimbergo Croce Sedico Portenone Pozzuolo Tarzo Pordenone Pozzuolo Tarzo Pordenone Pozzuolo Tarzo Pordenone Pozzuolo Conegliano San Vendemiano Zoppola a Crocetta del Montello Pasiano di Poro del Grappa Oderzo Portogruaro Foe se Pio X Ponte di Piave Por polo Treviso Noventa di Piave Por Escio San Vendemiano Treviso Noventa di Piave Porte di Piave Por polo Treviso Noventa di Piave Porte di Piave Por polo Mestre Jesolo Sant'Antonio Spinea Legvigo Gulfo Venice a Solferino Adria Rosolina	rle Mi Piran	uggia San Dorligo de Plavje Skadan	ella Valle ščina serovo	hovci °Štalcerji 45° 30'
Spinea Le Vignole	Savudrija 💙	Sečovlje Vodice	Brgud RISNJA	A Dolnja Briga Hrast K Delpice
erme Lugo Alberoni	NovalVas	Buje Vižinada	Matulji KA	PELA
Codevigo Gulf o Venic	f Novigrad e Poreč	Grdoselo ^B orut ISTRIA	Kraljevica	Jasenak
Sista Chioggia	Vrsar	Baderna ^P ićan Brajkovići Plomin Kunj	Mošenice Porozina Njivice	Crikvenica Gradnik [®]
Adria Rosolina	Rovinj	Krunčići	Milahnić, _{KRK}	Novi Vinodolski Sibin)
Serra Donada Porto Tolle		Vodnjan Krnica	Cres _e Stara	Senj <mark>Brinje</mark> 45° Baška
Mesola [®] ROVIGO Goro	BRIONI ISLANDS	Bale [°] Krunčići Vodnjan Krniča Peroj N.P. [°] Jadreški P Pula [°] Premantura	ernat ^o V ^{alun} Baška dovići vrana	Švica
Codigoro Gorino Ferrarese		Premantura Cape Kamenjak	Supetarska Drag CRES F	a° ⁹ Starigrad Rab [®] Lipovo°
Santo Comacchio	Adriatic Sea	Kvarn	er Nerezine	Stinica Polje

Slovenian Coast is situated at the far northern end of the Mediterranean, along the Gulf of Trieste, which is the northernmost part of the Adriatic Sea. The whole coastal area is divided into three municipalities, namely, Koper, Izola and Piran.

Slovenian Coast is highly varied, with stretches falling into several types according to coastal typology. In general there are cliffs, shingle beaches, coastal plains (lagoons, wetlands) and artificial coasts.

Most of the Slovenian Coast represents the abrasive type of coast with steep and crumbling cliffs of marl and sandstone in different phases of development, and with different erosion driving forces prevailing. Majority of cliffs are in mature form having shingle beaches at toe. The main erosion factor there is weathering with occasional landslides and toppling, wave

⁴⁵ Source: Krestenitis Y.N. & Androulidakis I.S. (2006).

erosion being limited only to occasional extreme storm events. Minority of almost vertical cliffs is under constant erosion action of waves, rock falls and toppling being main failure modes there. The accumulative type of coast is formed by large quantities of fine sediments, deposited by rivers: mainly by the Soca and to a smaller extent by the Rizana, the Badasevica and the Dragonja. The sediment deposition resulted in coastal plains facing a shallow sea with muddy gently shelving sea bottom. Coastal plains are mostly highly changed by human activities. Some were developed to saltpans and artificial lagoons, while in Koper area there has been extensive dredging of navigational canals combined with deposition of material to build the docks. Most of the coastline is protected by artificial structures. However, during extremely high tide events the stretches of low coast are flooded for some hours short periods several times a year. One of mayor problems, represents the historic centre of Piran. It is regularly flooded every time, usually in autumn, when astronomical high tide coincides with low air pressure and southerly wind storm surge.

4.19 Spain⁴⁶

In the Mediterranean area, erosion has greatly increased as a consequence of the drastic reduction of fluvial sediment input due to the regulation and reforestation of river basins and the construction of dams. The coastal evolution of the Ebro delta clearly shows this tendency (Sanchez-Arcilla et al. 1998). Most of the areas affected by accelerated erosion are the result of the construction of ports that interrupt littoral drift, and the situation is exacerbated by urban development and the construction of infrastructures as well as by the associated coastal defence structures. In some cases, this has involved the erosion of the barriers separating coastal wetlands from the sea, such as the one between Punol and Massalfasar, as a result of the port of Sagunto, the spit of the lagoon between Valencia and Cullera, due to the Valencia

⁴⁶ Source: Antonio Cendrero Uceda, Agustin Sanchez-Arcilla Conejo and Caridad Zazo Cardena (2005).

port, and the closing barrier of Santa Pola lagoon, a consequence of the Santa Pola port (Alicante).

In other cases, the erosion of beaches and coastal plains has been radically accelerated, like in Puerto de Mazarrıı (Murcia) and Carboneras (Almeria).

The conatruction of walls or coatings in areas where retreat is now an established fact (for example, in the Manga del Mar Menor) breaks the natural summer/winter sediment balance and causes two negative effects: it inhibits the growth of the beach in summer by waterproofing the swash area, and prevents the erosion of the upper part of the beach in winter, and consequently, the formation of the sediment bar which acts as a reserve in the area of transition to the shoreface. In all these cases, the estimate of transports, both longitudinal and transversal, presents multiple uncertainties with regard to the present climate (Sanchez-Arcilla et al. 2001), and even more for future climate scenarios.

On the northern coasts, the situation is different, as the basins flowing to these have not generally been subjected to any great regulation. On these coasts, there is evidence of appreciable increases in sediment deposits in recent times, most likely as a result of human intervention (Cendrero 2003; Remondo et al. 2004; M²ndez et al. 2004, Cendrero et al. 2004).

The retreat of beaches and dune fronts, however, is perceptible in many places, or even the accelerated erosion of "soft" cliffs (Rivas 1991; Rivas and Cendrero 1991, 1992, 1995).

Based on these data, it could be considered that a rise of around 50 cm for the end of the century is a reasonable scenario. A pessimistic hypothesis, much less likely but which cannot be ruled out, would involve a rise of 1 m, corresponding to the maximum in certain predictions and with the aforementioned levels in the past. This situation appears to be much less likely on the S and E coast than on the N.

In the case of a generalised rise in mean sea level (MSL), the most vulnerable areas would be deltas and naturally or artificially confined beaches. The part of the Spanish coast with cliffs made up of resistant rocks would present no particular problems. There is potential danger, however, regarding the stability of the coasts with cliffs consisting of non-coherent materials (not very significant). The hypothetical scenario of 0.5 m maximum possible rise could mean the disappearance of 30% of the beaches in the eastern part of the bay of Biscay, considering that no natural or artificial nourishment of sediments takes place. A relative rise in MSL by 0.5 m without an associated sediment response would give rise to the disappearance of around 50% of the Ebro delta.

These hypothetical rises in MSL could cause the flooding of coastal lowlands (deltas, coastal wetlands and agricultural and built up areas in the vicinity of deltas or on coastal alluvial plains).

On the eastern part of the Bay of Biscay, this could imply the flooding of some of the lowlands, estimated at 23.5 km2 for the above-mentioned value. In the Mediterranean and the Balearic Isles, and supposing a maximum of 0.5 m, the most threatened areas, apart from the aforementioned deltas (Ebro and Llobregat), are the Manga del Mar Menor (around 20 km), the Cabo de Gata lagoons (5 km) and, in the Gulf of Cadiz, around 10 km of the coast of Doo ana and around 100 km2 of marshland. Some of these areas are occupied by buildings or infrastructures, but others are devoted to agricultural use or are part of a nature park, and could allow for the formation of new wetlands which would compensate, by displacement, for the

foreseeable loss of other wetland areas due to permanent flooding.

However, more precise estimates about the future evolution of this kind of coastal systems should also take into account changes in the height and intensity of waves and meteorological tides.

It should be pointed out that, added to the potential impacts of climate change, other factors of anthropic origin, such as changes in river sediment transport or construction on the coast, have, at least, a similar potential influence in the short-term stability of the coast.

<u>4.20 Syria</u>⁴⁷

The Syrian coastal area represents only 2 % of the country's surface but hosts 11 % of its population (i.e. 1.5 million). The major coastal cities are Lattakia, Jableh, Tartous and Banias. Coastal urbanisation, due to housing needs (local and tourist) and industrial development, (harbor facilities) has led to serious environmental problems.

These problems are: disposal of untreated urban and industrial wastewater, oil slicks from the oil refinery and the oil terminal, and the management of solid wastes. In total it is estimated

⁴⁷ European Environment Agency (2006).

that 24.8 million m3 of urban wastewater, 99 % of which is untreated, is discharged into the sea. As a result, the loads of heavy metals discharged into the sea can be high, for example the maximum value of lead (Pb) measured in marine sediments has reached 358.5 mg/kg in Tartous harbour.

- Lattakia area: urban wastewater (7 364 tonnes of BOD5, 1 664 tonnes of nitrogen and 377 tonnes of phosphorus), solid waste dumping site on the shore and eutrophication of the coastal zone.
- Tartous-Banias area: urban wastewater, (5 582 tonnes of BOD5, 714 tonnes of nitrogen and 218 tonnes of phosphorus), industrial plants including a petroleum refinery (at Banias) and a power generation plant.

4.21 Tunisia

Tunisia has more than 1300 km of coastline that shows a big variety of natural landscapes. This wealth is strengthened by the existence of numerous island spaces. Unfortunately, due to the reasons listed below, a lot of beaches face critic phenomena of erosion. Those reasons are a) human activity which is concentrated on the coast area (90% of tourism activities and hotels, 90 % of industry, 46 harbours & ports, 70% of the population, etc.), and b) impact of some natural conditions, like the shortage of sediments (dams on the rivers)⁴⁸.

⁴⁸ Source: Krestenitis Y.N. & Androulidakis I.S. (2006).i

On the northern coast, the beaches are most often less sensitive to erosion problems and have, sometimes a rather excess sedimentary budget in the case of the beaches occupying the oueds mouths. However, weakness signs, balance break threats and sometimes even preoccupying erosion problems exist in developed segments notably those belonging to important agglomerations zones⁴⁹.

In Tunisia, although there is no specific legal framework for coastal zones, there is a specialised agency, which, since 1995, has had the mission of instituting an integrated form of development.

Tunisia receives nearly 5 million tourists a year, primarily from France, Germany, the United Kingdom, Italy and countries of the Maghreb. In 1999, Tunisia put in place an action plan to develop cultural tourism^{50.}

⁴⁹ Source: REPUBLIC OF TUNISIA, MINISTRY OF ENVIRONMENT, AND LAND PLANNING (2001), "Initial Communication of Tunisiaunder the United Nations Framework Convention on Climate Change"

⁵⁰ WWF Mediterranean Programme Office and AMBIENTEITALIA(2004), Guidelines for sustainable tourism investments in the Mediterranean coasts,

<u>4.22 Turkey⁵¹</u>

The Turkish coast extends for 8 333 km and can be divided into the Aegean region and the eastern Mediterranean region. Urban and industrial centres, oil terminals, agricultural and recreational facilities on the coast are the major land-based pollution sources in both regions (NDA Turkey, 2003). Rapid urbanisation is taking place in Turkey because of recreational constructions and extensive building of second (vacation) houses on the Aegean and eastern Mediterranean coastline. This is drastically altering the landscape. Coastal erosion is also an important problem. Out of 110 sand dune systems recorded in the 1980s only 30 (27 %) are relatively intact today.

Areas of concern and LBS include:

⁵¹ Source: Krestenitis Y.N. & Androulidakis I.S. (2006).i

- Bay of Izmir: urban and industrial wastewater; Rivers Gediz and Bakircay drain large agricultural and urban areas transporting significant nutrient loads into the sea causing eutrophication;
- Buyuk Menderes River: untreated industrial wastewater (mercury, cadmium and chromium from leather industry);
- Aliaga and Foca regions: harbours and untreated industrial wastewater;
- Iskenderun Bay: industrial activity including petroleum pipeline terminal (oil pollution from deballasting and operational oil spills);
- Mersin: industrial and urban wastewater, heavy shipping activity;
- Bodrum: tourism and aquaculture activities.

Table 8 – The MEDITERRANEAN SEA COASTAL ZONING AND DESCRIPTION

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
Albania	Durres	Lalzi bay with the	The coastline of the	The area of Porto	The loss of large	Recognizing the importance of these issues,
		Erzeni river	Rodoni-Bishti i Palles	Romano and Lalzi bay	wetland parts by land	the government of Albania has embarked
		<i>mouth</i> ⁵²	Capes, of which 35 %	is a narrow, reclaimed	reclamation, the	on implementing a water sector strategy
			are cliffs exposed to	part of the coastal	quality of natural	(Rural Water Supply and Sanitation
			mild erosion stretching	plain. There are some	environment of that	Strategy,
			C C	natural habitats left	area continues to	recently endorsed by the government)
						focussing on both urgent system repairs and
			remaining parts of this	along the coastline,	deteriorate due to the	sector
			unit are alluvial beaches	such as a belt of pine	input of the polluted	reforms. The government also adopted a
			(actually, the Lalzi bay)	trees, temporary	Erzeni river	Biodiversity Strategy and Action Plan in
			of which 18 % is	marshes, roadbeds and	(contaminated mainly	2000 that include the Kune Vain marshland
			exposed to erosion and 47	salt marshes.	by sewage disposed	as one of the priority areas in the network
			% to deposition.		upstream), direct	of
					discharge of	protected areas and identifies lack of

⁵² Intergrated Water & EcoSystems Management GEF(2003),<u>http://www.iwlearn.net/publications/prd/pb/File_112866892247</u>

ASON

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
					untreated urban and	adequate management capacity as a key
					industrial	issue for stustainability. The government
					wastewater in the	recently approve a law on protected areas
					Porto Romano bay,	that supports a more advanced management
						concept based on long-term sustainability ⁵³ .
					trees for fuel, and	The proposed project fits with and supports
					uncontrolled hunting	the government strategy on water and
					_	biodiversity by introducing new approaches
					and fishing	to integrating wastewter management into
						an overall ecosystem management.
Albania	cape of Palla	Porto Romano ⁵⁴	The Porto Romano bay	Posidonia oceanica	The city itself is a	The Durrës area is the biggest "hot
	(Durresi)		is a section attacked by	and very well	concentration of	spot" on the Albanian coast, and is the
			erosion.	developed marine	environmental	most obvious example of what might
			direct discharge of	communities are found	problems, because of	happen if non-sustainable coastal

⁵³ Integrated Water and Ecosystems Management Project (blended with IDA Municipal Water and Wastewater Project)(2003), http://www.gefweb.org/Documents/Council_Documents/GEF_C21/Multi_Focal_Area_- Albania - Executive_Summary.pdf

⁵⁴Republic of Albania(2002), <u>http://nfp-al.eionet.eu.int:8180/convention/other_conv/1075458781</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			untreated urban and	along Porto Romano	the near-total lack of	development takes place.
			industrial	bay.	environmental	The central
			wastewater	A narrow, reclaimed	services. flawed	open channel is now the final receptor
			with the presence of	part of the coastal	implementation of	of all sewage waters of the Durres
			pathogens is the	plain. There are some	industrial (Porto	District, whose discharge at sea
			potential contamination	natural habitats left	Romano) or	can provoke pollution effects and
			of seafood,	along the coastline,	tourism (Lalëzit Bay)	damages to the marine environment in
			particularly shellfish,	such as a belt of pine	policies, may	the area of Porto Romano.
			which are are	trees, temporary	disappear very soon.	
			commercially very	marshes, roadbeds and		
			important for Albanian	salt marshes ⁵⁵ .		
			fishery.			
Albania		Karavasta Lagoon	The Semani River has	Karavasta Lagoon is	Economical and social	As a contracting Party to many international
		system together	changed the position of its	separated from the sea by	liberalization of the	conventions, such as Barcelona Convention,
		with <i>Shkumbini</i>	mouth on several	the spit stretching	country has caused a	Ramsar Convention, Biodiversity

⁵⁵ Intergrated Water & EcoSystems Management GEF(2003), <u>http://www.iwlearn.net/publications/prd/pb/File_112866892247</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
		and Semani River	occasions in historical	southward from the	massive and	Convention, and Bern Convention, Albania
		mouths ⁵⁶	times, at least six times in	Shkumbini Delta , it has	uncontrolled	is committed to
			the last 100 years along a	maximum length of 10	migration of the people	create an effective system for the
			corridor 25 km long. in	km, width of 4.5km and	towards the coast, and	administration of its coast. An important
			the 1950s a new outlet	water depth of 1.5m.) It	hence an increase of the	part of this system is
			became the main river	can be described as a	human pressure and	the preparation of management plans for
			mouth at the southern	system with low wave	demand on marine and	areas of particular conservation concern58.
			edge of Karavasta,	energy, predominant	coastal resources ⁵⁷ .	
			building up a small delta	longshore sand transport,		
			complex whose eroded	limited overwash		
			sediment is currently	processes and widely		
			creating the new spit.	spaced tidal channels		
Albania	Otranto Strait	Vlora Bay - Narta	The Narta Lagoon is one	Narta Lagoon is situated	The soil industry is	Anthropogenic activities have a great
		Lagoon - Vjosa	of the most important	in the northern part of the	extracting water from	impact on Vjosa River Mouth- Narta
		River Mouth ⁵⁹	lagoons of Albania. The	Vlora Bay, about 3 km	the lagoon without a	

⁵⁶ Source: Y.N. Krestenitis & I.S. Androulidakis (2006)
 ⁵⁷ Source: Vjose-Narta Landscape Protected Area Administration 2005, <u>http://www.medwetcoast.com/IMG/Narta_Vjosa_MPanglishtja.pdf</u>
 ⁵⁸ See prev. note.
 ⁵⁹ Pano.N, Frasheri.A, Lazaridou.M (2002)

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			lagoons of Albania. The	Vlora Bay, about 3 km	the lagoon without a	Lagoon- Vlora Bay water system. Both
			southward shift of the	from Vlora City.	preliminary study. In	Albania and Greece do not have a regional
			Vjosa River mouth during	Two islands	the surrounding area of	or
			the XX century has	are located in the south	the lagoon , oil is drilled	international program for pollution
			created serious erosion	part of the lagoon, with	and gas is extracted	monitoring in Vjosa-Aoos River System.
			problems in the northern	an approximate surface of	from deep wells. But	
			coast of the Narta lagoon.	7 ha. The bigger of the	intensive agricultural	
			The sediments input	two is covered with	and industrial activities,	
			to the old delta ceased, the	cypress. The famous	as well as the	
			latter has almost been	Monastery of St. Mary,	development of	
			completely eroded and the	built in	tourism, without being	
			sediment was removed to	XIV century is situated in	based on a management	
			create a spit, which	this island.	plan, may provoke	
			formed an accumulative	The total Vjosa River	serious problems to the	
			zone in the southern part	sediment discharge in the	lake in the future. The	
			of the Vjosa River old	Adriatic Sea is	most important danger	
			mouth. This spit tends to	WT=7.5x106 tons/year.	that the lagoon	
			vide of the littoral cordon	About 20% of total	confronts is the	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	cterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			of the Narta	sediment load equivalent	imminent isolation	
			Lagoon in the west	to WF=5.6x106 tons are	from the sea. In the	
			direction.	the bottom-load, and	Narta Lagoon are	
				about 80% equivalent to	observed intensive solid	1
				WP=1.9x106 tons are the	deposits of the Vjosa	
				sediment load. This	River on the coastal	
				river discharge is the	area tending to stop the	
				main source of coastal	active water exchange	
				sediments in Vlora Bay	between the lagoon and	
				(Pano N., 1984).	the sea resulting in lack	
				The dynamics of solid	of fresh water in the	
				deposits along the coastal	lagoon. Dirty untreated	
				zone and the	urban water flow also	
				accumulation	exists in the lagoon.	
				intensity of sand are	Vlora bay: flow of the	
				closely tied up with the	dirty	
				warning process and	untreated urban and	
				particularly with the	industrial water in the	
				maximum wave effect.	sea, exploitation of the	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	cterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
					sand and gravel from	
					beaches for constructive	
					materials, deposition of	
					the solid industrial	
					waters (Cu, mercury,	
					clay etc) in the onshore	
					and offshore coastline.	
Algeria	Wilaya of		The coastal zone of	of	heavily urbanized and	Regulations exist but implementation of the
	Alger ⁶⁰		central part of Alger	ia	industrialized, affected	legislation is made difficult due to the huge
			face heavy erosion due t	to	by untreated	demand of sand and gravel to feed
			man made causes.		wastewaters	ambitious programme of housing and
			The site is threatened b	у	One of these causes is	industrial development. lack of
			water pollution (organi	с,	sand mining on beaches	urban and industrial development planning.
			chemical and physica	al	and dunes. huge	
			pollution), ba	nd	demand of sand and	1
			agricultural practice	es	gravel to feed ambitious	3
			leading to destruction of	of	programme of housing	5
			the natural vegetation	n,	and industrial	

⁶⁰ A. Abdelbaki and M. Boudouma (1995)

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			erosion, bad water		development.	
			management (irrational			
			water pumping),			
			destabilisation of the			
			shore which leads to			
			destruction of the dunes			
			and modification in the			
			food chains. Habitat			
			destruction is caused by			
			bad ploughing,			
			overgrazing, and the			
			cutting of Typha latifolia			
			and <i>Tamarix africana</i> .			
Croatia	Dalmatia, East	County of Split-	coast, wetland, estuary,	water pollution, sediment	tourism/recreation,	overall policy, pollution control,
	Adriatic	Dalmatia, County	coastal forest, rocky coast,	movement, coastal	over-fishing,	development control, resource
	Dalmatia:	of Šibenik-Knin,	lakes/rivers, bay, island,	erosion, endangered		managment, institutional strengthening,
		County of Zadar	peninsula, sandy beach;	species, habitat loss,		biodiversity conservation, planning,
		and County of				capacity building, education/awareness,

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Chara	cterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
		Dubrovnik-				monitoring, networking; Integrated Coastal
		Neretva ⁶¹				Zone Management at the national,
						regional/county, local and sectoral level,
						sustainability and biodiversity conservation,
						integrated ecosystem approach
Croatia		Kaštela Bay ⁶²	intensive degradation		uncontrolled industria	total absence of adequate measures for the
					development and urban	reduction of urban and industrial pollution.
					sprawl, and fast growth	1
					of surrounding village	5
					and the town of Split.	
					This area became, in	1
					the mid eighties, one o	f
					the largest and mos	t
					widely known pollution	1

⁶¹ Source: Priority Action Plan (website), Mediterranean ICAM Clearinghouse, <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=20&shortID=91&start=start</u>

⁶²Source: Priority Action Plan (website), Mediterranean ICAM Clearinghouse <u>http://www.pap-</u> medclearinghouse.org/eng/page_frameset.asp?Page=KastelaDugi.htm&IDLong=13&IDShort=84

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
					"hot spot" areas in the	
					Mediterranean region.	
Croatia,	Split-Dalmatia	River Cetina ⁶³	river basin and the	water shortage, sediment	urban expansion, water	The greatest problems occur with
Bosnia and	and Šibenik		adjacent coastal area	movement, coastal	pollution, air pollution,	conflicting demands for land-use for
Herzegovina			(approx. 1,200 km2)	erosion,	soil pollution,	housing, tourism, and economic
			Coastal degradation is	endangered species,	population growth,	development in the most attractive part of
			caused by coastal erosion.	habitat loss. The coastal	tourism/recreation,	the watershed (fertile fields and coastline).
			After construction of	area of the Cetina River	mineral extraction,	Uncontrolled immigration and building
			hydro power plants and	watershed is	over-fishing, transport	directly threaten the natural resources,
			storage reservoirs in the	characterised by narrow	congestion,	which are the basis of development and
			watershed and riverbed,	coastal flysh strip	The development of	survival in the area. This refers to both the
			the dynamics of sediment	bordered by steep	tourism and industry on	river basin and the coastal area. The
			creation and transportation	mountainous hinterland.	the coast, has been	coastline has been completely built up so
			were completely		responsible for the	that open access to the sea is almost
			transformed, triggering		current higher	impossible, and its use for recreation and
			great changes to the		population density in	other sea-related activities proves very
			sediment dynamics of the		the coastal strip	difficult.Uncontrolled, construction of

⁶³ Source: Priority Action Plan (website), Mediterranean ICAM Clearinghouse <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=20&shortID=91&start=start</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			coastal area. The sediment		nearly 64,000 people	houses and tourist structures. The river
			is constantly being		occupying the coastal	mouth area is used for several, often
			reduced by the action of	, ,	area and the islands	conflicting purposes, such as settlement
			waves and sea currents,		have been supplied with	growth (Omiš) and the development of
			while the sediment		water from the Cetina	industry and tourism, despite the fact that
			transported by the river is		River. The immediate	the protection of the unique natural
			considerably reduced,		hinterland is devastated	characteristic of the Cetina River canyon
			causing the sediment		by intensive	and mouth is a priority
			deficit in the river mouth		uncontrolled building in	The process was initiated by PAP/RAC.
			area.		continuum.	The first step taken was the preparation of
						the "Conceptual Framework and Planning
						Guidelines for Integrated Coastal Area and
						River Basin Management".
Cyprus	from Cape Kiti	Dolos-Kiti ⁶⁴	The 30% of the total	Type of coast: Shingle	Socio-economic	Engineering techniques: Harbour
	to Zigi		coastline of the island	beaches	activities: Agriculture,	breakwaters, groynes, detached breakwater,
			suffer from erosion (in	Tidal regime: microtidal	Industry (cement),	revetment.
			some areas reaches about	Range of waves :	fisheries, and tourism.	Policy options: Limited intervention, Do

⁶⁴ Source: Eurosion (website), Shoreline Management Guide <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			0.5m/yr).	dominant sea, Hs up to	There are 10 villages in	nothing.
			Erosion of the coastline	1,5 m high, H max about	the coastal area, with a	Since late 1980s, Cyprus Government has
			due to natural but mainly	5m.	total population of	realised that coastal zone is a natural
			to manmade causes,	The total length of the	9,173 and several	resource for the island which was under the
			coupled with shortage of	coastline is 36km. The	conflicting uses. The	threat of extinction due to the over pressure
			fine sandy beaches	coast is generally	land uses of the coastal	resulting from intensive tourist
			became a serious problem	relatively low and flat,	area have been mainly	development. The problem of erosion still
			of growing concern the	and it is mainly	agricultural until	exists in several coastlines of the island,
			last 20 years. At the same	characterised by	recently, when by a	although there have been efforts to
			time the growing pressure	accumulations of gravel	reform of the Town	implement Integrated Coastal Zone
			for utilisation and	and pebble and few tiny	Planning regime most	Management. Eventually the problem of
			exploitation of the coastal	poor sandy beaches	of the agricultural areas	beach quality became very important and
			zone was making the		have been characterised	efforts started to combat erosion, some
			whole picture worse.		as tourist or	using legal and some illegal methods.
					development areas.	
Egypt		Nile Delta ⁶⁵	coast, rocky coast, bay,	sediment movement,	preparatory activities,	

⁶⁵ Source: Priority Action Plan (website), Mediterranean ICAM Clearinghouse <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=3&shortID=25#25</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			sandy beach	coastal erosion	institutional	
					strengthening, planning,	,
					capacity building; the	
					shore protection Master	
					Plan was the result of a	
					comprehensive study	,
					and contains detailed	
					plan for 13 selected	
					sites on the delta.	
Egypt		The <i>Rosetta</i>	One of the two main	• •	It is considered the life	The typical engineering betation
		waterway ⁶⁶	branches of the Nile River	r 1500 to 1900 the eastern	artery for fishermen	to defend a mouth from a
			in Egypt and it is located	l and western parts of the	who live at the Rosetta	progressive sediment accumulation
			on the eastern side of Abu	promontory were	district in Egypt.	
			Quir Bay coast and a	t extended by about 11 and	The closure of the	implies two jetties to either totally or
			about 60 km to the east of	f 8.5 km into the sea due to	Rosetta estuary caused	partially block the littoral drift. This
			Alexandria city.	the large amount of		solution had negative impacts on the
			The ⁶⁷ impact of climate	e sediments brought by	not only affect their	adjacent beaches.
			change including SLR and	l Rosetta branch.	livelihood but also	

⁶⁶ Source: Y.N. Krestenitis & I.S. Androulidakis (2006)

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			salt-water intrusion is also		endangers the people	shortage ⁶⁹ of urban and environmental
			another threat to the	,	live upstream of the	planning
			region		mouth due to releasing	
			land ⁶⁸ based pollution to		a probable emergency	
			water resources and	l	flood.	
			international water, urban	L		
			encroachment in	L		
			agricultural land			
Egypt	Located in the	Burullus	It was built up by the	,	fishery	The dynamic processes and
	central	headland ⁷⁰	sediments brought by the	,		environmental forces affecting the
	northern part		very active Sebennetic old	l		coastal changes along Burullus area
	of the Nile		Nile branch. This hump			
	delta between		has been eroded from	L		have been monitored for about 25
	Rosetta and		more than 1000 years			years. These measurements include
	Damietta		when the feeding branch	L		the collection of wave data, daily
	branches.		seems to have ceased its			measurements of longshore currents,
		<u> </u>	importance and died out			

⁶⁷ Source: "SMART: Sustainable Management of Scarce Resources in the Coastal Zone", <u>http://www.ess.co.at/SMART/b5.html</u>
 ⁶⁸ Source: "SMART: Sustainable Management of Scarce Resources in the Coastal Zone", <u>http://www.ess.co.at/SMART/b5.html</u>
 ⁶⁹ Source: "SMART: Sustainable Management of Scarce Resources in the Coastal Zone", <u>http://www.ess.co.at/SMART/b5.html</u>
 ⁷⁰ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			importance and died out.			beach profiles and bottom sediment
			The problems of the area			samples. Water level variations and
			vary from serious erosion			discharge through Burullus outlet
			on both sides of the lake			are also being measured. Longshore
			outlet to siltation and			sediment transport rates have been
			shoaling of the outlet itself			-
			which is important for fish			evaluated using standard formulae.
			and fry.			The accumulated data, account for
						the processes responsible for the
						recession of Burullus hump, have
						been used in the design of shore
						protection structures and to improve
						the existing ones.
Egypt		Port Said headlan	d the shoreline has shifted	Increasing numbers of		The change in the coastline along
		& Bardawil	southward (retreated) at	engineering protective		the northern Sinai coast probably
		lagoon 71	the northern Sinai coast of	structures along the Nile		results from the increasing numbers
			Egypt.	delta coast, which		of an air corring protoctive structures

⁷¹ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			Prior to the construction	blocked sediment		of engineering protective structures
			of these structures,	transport to the east and		along the Nile delta coast.
			5	thus decreased sand		large numbers of coastal structures
			nourished the entire coast			have been built to protect the beach
			of Sinai. In the absence of			-
			significant Nile sediment			and stabilize the lagoon inlets.
				substantially modified as		The last decade, there were
				a result of controlling the		constructed two large-scale detached
			actively erode the protruded coat of Sinai.	Nile flow by two dams at		breakwater systems on the Nile delta
			beach erosion has	Aswan.		coast of Egypt at <i>Baltim</i> and <i>Ras El</i>
						Bar beaches (~18.3 km shoreline
			been substantially			length). The two protective systems
			increased in the			
			downdrift sides of			were installed in a water depth of
			these protective			between 3 and 4 m and consist of 17
			systems, being -20			units in total (each ~250 m long).
			m/year at Baltim and			The preconstruction beach erosion at
			-			Baltim (-5 m/year) and at Ras El Bar
			-9 m/year			(6 m/war) has have replaced

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			at Ras El Bar. Further	•		(-6 m/year) has been replaced,
			seaward, the two			respectively, by the formation of
			protective systems at			sand tombolo (35 m/year) and
			Baltim and Ras El Bar	-		
			have accumulated seabed	l		salient (9 m/year).
			sand at maximum rates of	2		
			30 and 20 cm/year and	l		
			associated with downdrift			
			erosion of -45 and -20			
			cm/year, respectively			
Egypt		Alexandria coast ⁷²	The major headlands	Characterized by high	For the Governorate of	
			occurring along the shore	wave energies	Alexandria, two main	
			of Alexandria extend into	particularly in winter.	economic areas appear	
			the surf zone and confine	Waves induce opposing	most vulnerable: the	
			the beach sands to littoral-	SW and NE longshore	Alexandria lowlands	
			cell embayments and	currents (Frihy et al.,	and the Alexandria	
			pocket beaches, with little	2004). The higher	beaches (El-Raey et al.,	
			or no bypassing. This, in	proportion of SW	1995). The Alexandria	

⁷² Source: Y.N. Krestenitis & I.S. Androulidakis (2006).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			effect, makes the	currents is attributed to	lowlands-on which the	
			Alexandria resort cell area	the large angle between	city of Alexandria	
			an extended pocket beach	the incident waves and	originally developed-	
			and implies that the long-	the average shoreline	are vulnerable to	
			term net littoral drift is	orientation and geometry,	inundation,	
			close to zero.	as well as to the	waterlogging, increased	
			sand accumulation	irregularity of the seabed	flooding, and	
			patterns adjacent to the	and the undulating	salinization under	
			groins constructed along	coastline. This situation	accelerated sea-level	
			the Alexandria coast,	differs from that recorded	rise. The two surviving	
			where sand is being	at the Nile delta and	Alexandria beaches	
			deposited both to the	indicates that	(Gleam and El Chatby)	
			immediate east and west	southwesterly littoral	will be lost even with a	
			of the groins. The	currents at Alexandria are	0.5-m rise in sea level.	
			seasonal reversal in the	strong enough to	Based on the 0.5-m	
			direction of sand transport	transport sediment along	scenario, estimated	
			along the beach is	the coast. By contrast,	losses of land,	
			predominantly northeast	easterly littoral currents	installations, and	

⁷³Source: Watson Robert T., Zinyowera Marufu C., Moss Richard H. and Dokken David J. (Ed.s)(1997).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			during the winter and	are more dominant along	tourism will exceed	
			summer months, and	most of the Nile delta	US\$32.5 billion. An	
			southwest during autumn	coastline, with only	average business loss is	
			and spring, but with a zero	occasional reversals to	estimated at US\$127	
			net littoral drift when	the west	million/yr because most	
			averaged over several		tourist facilities such as	
			years.		hotels, camps, and	
					youth hotels are located	
					within 200-300 m of	
					the shoreline ⁷³ .	
Egypt	west of the	Abu Kir Bay ⁷⁴	It includes important	It includes a large lagoon	Recently, the region has	The Governorate of Alexandria has recently
	Nile delta		Abu Kir is located	(Lake Idku) as one of the	attracted attention for	decided to upgrade environmental and
			overlooking the western	less polluted lakes of the	development because of	tourist conditions along the coast. Extensive
			side of historic Abu Kir	five northern lakes of	recent discoveries of	waterfront developments have been
			Bay. It is also close to	Egypt, nourished by the	sunken historic ships	introduced only recently.
			Lake Idku and historic	Rosetta branch of the	and cities.	Integrated upgrading of both marine

⁷⁴ Source: SMART: Sustainable Management of Scarce Resources in the Coastal Zone Project Work Plan. http://www.ess.co.at/SMART/b5.html

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			sites of Rosetta city and	River Nile (average flow	Resources in the region	resources through conservation of
			Rosetta region, which	of about 4-5 billion m3	include beautiful and	biodiversity in the bay, better monitoring
			includes Lake Idku and	per year) The lake	scenic view of the Bay,	and assessment of international water
			associated wetland. Lake	receives water from three	Lake Idku, Lake	dumped in the region as well as planning
			Idku is situated about 30	drains along the southern	Burullus and coasts,	and development of urban coastal area will
			km east of Alexandria. I	t and eastern sides.	historic tourism in	render this area into a highly desired area
			is a shallow (1.0-1.5 m	Seawater is primarily	Rosetta city, Alexandria	for tourism.
			depth) brackish water lake	affecting the western side	city and in the Bay,	
			with one connection to the	of the lake near the outlet.	ecotourism in lake Idku	
			Mediterranean at E	After construction of the	and adjacent area,	
			Meadia. It has an area of	f Aswan High Dam, the	religious tourism for	
			about 125 km2.	annual drainage in the	Islamic area in Rosetta	
				lake has increased. This	and Near by	
			Rosetta region has been	has caused an increase of	Alexandria, diving,	
			suffering from various	the level of the lake and	snorkeling and yachting	
			aspects of mis-	induced flow from the	in the bay, with a	
			management, neglect and	lake into the sea and the	unique mixture of	
			deterioration in the past.	lake became less	urban, rural and marine	
			Problems of coastal	influenced by salt water	culture	
			erosion, land based	from the sea.		

Country	Area	Name	Coast and Erosion	Physical				Anthropogenic Chara	cterization
			Description	Charact	erizatio	on			
								Social –Economic	Policy & Management
								Facts	
			pollution to water	from	the		sea.		
			resources and	Historic	cities	such	as		
			international water, urban	Rosetta,	Abu	Kir	and		
			encroachment in	Idku.					
			agricultural land,						
			vulnerability to sea level						
			rise (e.g. El Raey et al,						
			1997,1998,1999) and						
			shortage of urban and						
			environmental planning.						
			Loss of marine						
			biodiversity due to						
			increased load of dumped						
			waste in the bay and loss						
			of agricultural and bird						
			biodiversity due to						
			deterioration of soil						
			conditions and water						
			quality in the region. The						

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			impact of climate change			
			including SLR and salt-			
			water intrusion is also			
			another threat to the			
			region. Losses of			
			resources in the region			
			have caused large-scale			
			deterioration of			
			socioeconomic conditions.			
France		Mediterranean	urban expansion, water	Coast, river basin and the		pollution control, resource management,
		and Corsica	pollution, coastal erosion,	adjacent coastal area,		institutional strengthening, biodiversity
		Region ⁷⁵	tourism/recreation, over-	lakes/rivers; mountains.		conservation, planning, monitoring,
			fishing, endangered			networking; water
			species			management/rehabilitation/information
						system

⁷⁵ Source: Priority Action Plan (website), Mediterranean ICAM Clearinghouse <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=11&shortID=66&start=start</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
France	Régions	Rhône ⁷⁶ delta	The coastline of the	Coastal characteristics	This stretch of coast is	Engineering techniques: Groyne, seawall,
	Provence-		Rhone delta (90km long)	Study area: 90 km ;	greatly influenced by	breakwater, revetment, nourishment, wind
	Alpes-Côte		is subjected to	Sedimentary cell: 4 km	economic, industrial,	trap sand ripping
	d'Azur and		predominant coastal	Type of coast: delta and	harbour and touristic	Policy options: Hold the line, limited
	Languedoc-		erosion (on average,	beaches (with fine sand;	activities, which are	intervention, do nothing.
	Roussillon		4m/yr over the last 60	D50 =0.2 mm)	sometimes in conflict	
			years) arising from	Tidal regime: micro tidal	with the protection of	The management choices are thus very
			structural reasons	(0,3 m)	the landscape and	different according to human and economic
			(sedimentary deficit, very	Range of waves : mean	natural heritage.	requirements: either to stabilise the position
			fine sands, energy of the	Hsig = $0,8$ m and T = $4,5$	Major public works are	of the coastline or to accept a moderate
			swell).	s ; annual storms Hsig=	effective and justified	retreat.
			The spatial distribution of	3m and , T :7 s	on sectors with high	
			the sectors in		economic value, where	
			erosion/accumulation can		such structures are	
			be divided into four		necessary to block	
			coastal units		coastal erosion.	
					However, their	

⁷⁶ Source: Eurosion (website), Shoreline Management Guide <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization
			Description	Characterization	
					Social –Economic Policy & Management
					Facts
					effectiveness is limited
					in time and they can
					produce negative
					effects. The choice of
					less-costly techniques
					(ganivelles) is effective
					provided that
					sedimentary input is
					sufficient. A number of
					innovative techniques
					(rebuilding up of
					beaches, sedimentary
					bypassing on river
					courses) have not yet
					been put into
					application.
France	Corsica	Calvi Bay ⁷⁷	a reduction of gravel and	1	Two main causes

⁷⁷ Source: Y.N. Krestenitis & I.S. Androulidakis (2006),

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			sand delivery from the	-	explain this trend: (1)	
			Figarella and Fiume Seccu		in-channel gravel-	
			coastal streams.		mining has been	
			Recent assessment of		operated on these	,
			bedload transport during a		streams since the	
			1 in 2 year flood and		1970's and (2)	
			stream bed changes		significant land-use	
			evaluated from aerial		changes have taken	
			photographs and field		place in their watershed	
			measurements (cross-		since the end of the 19 th	1
			sections, long profiles,		century.	
			sediment size analysis)			
			show these streams			
			deliver less and less			
			sediment to the beach,			
			thereby explaining its			
			erosion.			
Greece	western part o	of <i>Pieria</i> ⁷⁸		This coastal area is	During the second half	During the end of the 1980s and at the

⁷⁸ Source: Y.N. Krestenitis & I.S. Androulidakis (2006)

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
	the			characterised by extended	of the 20th century, the	beginning of the 1990s, measures were
	Thermaikos			sandy beaches, with a	coastal area was	undertaken along the coastal area to protect
	Gulf (NW			length of 15 to 20 km,	progressively	it from erosion. Five groins were
	Aegean)			which have been formed	developed as a tourist	constructed using natural stones. These
				as a result of the	resort area. The man-	constructions prevented erosion in the parts
				interaction of small rivers	made constructions	of the coastline lying between them, but not
				and tributaries'	have led to the erosion	the degradation of the beaches. The erosion
				discharges and the	of the most important	continued in the non-protected coastline
				dominant waves, from SE	part of the beach of this	areas. New groins were constructed (up to
				direction.	area.	10 groins) without a positive result. The
						erosion continued to affect the non-
						protected areas (Anagnostou, 2005).
Greece	Mesollogi	Mesollogi ⁷⁹	The barrier islets separate	Coastal characteristics:	Socio-economic	Policy options:
	West Greece	Lagoon area	the Messologi lagoon in	Study area: 15 km;	activities:	Hold the line
			Western Greece from the	Sedimentary cell: 30 km	Fishery activities	
			Patraikos gulf. The	Type of coast: beaches		

⁷⁹ Source: Eurosion (website), Shoreline Management Guide <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social – Economic	Policy & Management
					Facts	
			erosion of the sandy	(with medium sand, D50		
			barrier islets due to	0 = 0,2 - 0,6 mm),		
			significant changes in the	e saltmarsh.		
			sediment balance of the	e Tidal regime: micro tidal		
			coastline was introducing	g (0,18 m)		
			risk of ecological disaste	r Range of waves : 2.25-		
			for the Lagoon, which is	s 3.20m		
			protected by the Ramsa	r		
			convention. The	e		
			rehabilitation measures	5		
			consisted of a groin	1		
			system the engineering	9		
			design of which is	s		
			presented.			
			Engineering techniques:			
			Groynes			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Chara	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
Greece	Peloponese,	Lakkopetra ⁸⁰	Engineering techniques:	Coastal characteristics:	Socio-economic	Policy options:
	Achaia		Detached breakwaters	Study area: 150m	activities:	Limited intervention
	Province			(+future extension of	Tourism	
	NW edge of			140m)		
	Peloponese			Type of coast: beaches		
	10km east			(with fine-medium sand)		
	from the			Tidal regime: micro tidal		
	physical			(mean range 0.18m)		
	entrance of			Range of waves : 1.5-		
	Patras Gulf			2.5m		
Greece	northwest	Kato Achaia ⁸¹	At the end of the 1970s a	Sandy beaches were	fisheries' activities,	To avoid the accumulation of sediments in
	Peloponnisos		small port was	formed by the sediment	Tuorism	the port basin, new constructions were
			constructed. It has resulted	supply of the river Peiros.		undertaken in the 1980s, extending the
			rapid accumulation of			former wave walls, which solved the
			beach sediments to the			problem of sediment accumulation for a
			east of the construction.			short time. New constructions and

⁸⁰ Source: Eurosion (website), Shoreline Management Guide <u>http://www.eurosion.org/shoreline/index.html</u>

⁸¹ Source: Y.N. Krestenitis & I.S. Androulidakis (2006)

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			The fine sediments			installation of groins during the 1990s
			bypassed the wave wall			formed the modern type of man-made
			and were deposited in the			constructions in the area. To avoid erosion
			basin of the small port,			in front of a big hotel in the area large rocks
			creating problems for the			were placed there, changing the
			fishermens' boats. At the			physiognomy of this area
			same time erosion started			
			westerly of the			
			construction, creating			
			some serious problems to			
			a relatively large hotel in			
			the area.			
Greece	Cyclades	islands of Anafi,	A group of islands in	These islands are	Population decline in	limited administrative and organizational
	Archipelago,	Donousa, Thira	Greece located in the	characterised by small	some of these islands,	capacity, major deficiencies in respect to
	Region of	(Community of	center of the Aegean	surface area, limited	major population's	technical infrastructure and services, weak
	Southern	Oia), Ios,	Archipelago, consisting of	natural resources,	fluctuation. Rich	access to technological applications and
	Aegean	Kimolos,	24 inhabited small and	Tourism development	cultural heritage, a	innovation.
		Koufonissia,	medium size islands and a	poses pressure to existing	natural and built	Several of the islands host areas, which it
		Milos, Paros,	significant number of	traditional, in decline,	environment of unique	has been suggested to be included in the

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
		Serifos and	uninhabited small islands	activities like agriculture	value, domestic and	Natura 2000 network.
		Sifnos ⁸²	and islets.	due to increased demand	international	
			The total surface is	for land and manpower.	During the past decades	The main problems are: pollution problems,
			approximately 2,528 km2	Land speculation and	there were economic	the salinization of underground water
			while the total population	fragmentation of	recession and	resources, illegal building, significant
			increased from 94,005 in	agricultural land into	population decline.	deterioration of build and natural
			1991 to 111,181 in 2001.	small plots are some of	Recently, tourism	environment and of landscape quality and
			Intense tourism	the problems resulting	development	to the loss of agricultural land, loss of
			development which	from tourism	contributed for a	habitats and overgrazing, loss of vegetation,
			threatens the fragile	development. Conflicts	regional development,	soil erosion and desertification. Soil erosion
			balance between	between recent tourism	providing opportunities	has also resulted from the abandonment of
			economy, society and	development and mining	for employment.	agricultural activities in terraces.
			environment. Variety of	activities are gradually	Agriculture is gradually	
			ecosystems such as small	emerging	declining, completely	
			wetlands, coastal forest,	along with conflicts	abandoned in	

⁸² Source: Priority Action Plan (website), Mediterranean ICAM Clearinghouse <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=12&shortID=65#65</u>

Country	Area	Name	Coast and	Erosion]	Physical	Anthropogenic Charac	eterization
			Descriptio	n		Characterization		
							Social –Economic	Policy & Management
							Facts	
			rocky o	coast, sar	ndy ł	between development and	cultivation in terraces.	
			beaches,	grass a	and	conservation goals.	Tourism development	
			rangeland,	cropland w	vith		poses additional	
			significant	ecologi	cal		pressure mainly due to	
			features.				the increased demand	
							for land and manpower.	
							Land speculation and	
							fragmentation of	
							agricultural land into	
							smaller plots.	
							As the main economic	
							activity is tourism,	
							there is a high	
							dependance on the use	
							of the coasts. Tourism	
							is mainly seasonal.	
							Most of the tourist	
							infrastructure are	
							located along the coast.	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
Greece		The Island of	The island of Rhodes with	It is 80 km long and	The economy is caught	weak enforcement of planning and
		Rhodes ⁸³	its 220 km of coastline is	covers an	up in a saturated mass	environmental controls.
			situated at the	area of 1400 km2. The	tourism market,	The existing planning laws are particularly
			northeastern corner of the	central mountains are	environmental	important for environmental policy: the
			Dodecanese Archipelago	relatively high (1215 m at	resources are stretched	Framework Planning Law (Ekistics Law)
			in the Aegean Sea.	Mount Attaviros),	and the hinterland rural	for physical planning, and the Environment
			geographic concentration	surrounded by plains	communities are	Law for environmental
			of tourism development	northwards and	marginalized.	planning and control. Both are elaborate
			along the north and east	southward. The plains are	over-dependence of the	pieces of legislation but several limitations
			coasts;	boarded by sandy	economy on coastal	result in poor
			The coasts of Rhodes are	beaches. The continental	tourism, geographic	enforcement:
			exploited by mass tourism	shelf is narrow and depth	concentration of	• lack of an integrated planning process (no
			leading to an important	increases rapidly close to	tourism development	framework for regional planning and
			urbanization and local	the coasts. There are four	along the north and east	consideration of socio-economic issues);
			degradation of areas such	main marine habitats:	coasts;	• Planning Law is not enforced as a whole
			as in the northern part of	near shore sandy bottoms,		but selectively, occasionally and
			the island and to a lesser	forests of cystoseira		reluctantly;

⁸³Source: Priority Actions Programme, Regional Activity Centre(1996).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			extent on the east coast.	generally on shallow		• land property plays an important role in
			There is a gradual	rocky substrate, seagrass		society and family solidarity. Planning
			deterioration of the quality	meadows at a greater		controls affecting development rights are
			of the beaches (beach	depth,		generally resented and often actively
			erosion and coastal	and then coraline algae		resisted seen as a state threat to individual
			reshaping) in the city of	concretions in poor light		rights. Land use planning as a centrally
			Rhodes, the bay of Ixia,	conditions between 20		administered governmental responsibility is
			parts of the coastal strips	and 80 metres depth.		poorly enforced.
			along the			
			Kremasti-Theologos-			
			Soroni-Kamiros-Skala			
			area.			
Israel	area from Rosh	Mediterranean	The Mediterranean	The coastline can be	Roughly 70% of Israel's	Linear development along the coastline has
	Hanikra on the	coastline of	coastline of Israel extends	divided into four	population, which	been restricted. Much of the coastline is
	Lebanese	Israel ⁸⁴	about 190 km from Rosh	morphological sections	reached 5,5 million in	designated for various types of public open

⁸⁴ Source: Priority Action Plan (website), Mediterranean ICAM Clearinghouse <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=12&shortID=65#65</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
	Lebanese		about 190 km from Rosh	morphological sections	reached 5,5 million in	designated for various types of public open
	border to		Hanikra on the Lebanese	according to physical	1995, lives within 15	space. Areas of particularly high natural
	Zikim on the		border to Zikim on the	characteristics and	km of the	value, mainly river mouths and rocky
	border with the		border with the Gaza	sedimentological	Mediterranean	shores, have been designated as Nature
	Gaza Strip		Strip.	properties:	coastline. Intensive	Reserves. Beaches of high value for
			KEY ISSUES:	· Rosh Hanikra to Acco -	settlement along the	recreation in natural surroundings and sites
				a sedimentologically	coastal strip over the	of archaeological interest for visitors have
			Development pressure in	isolated region with	last 50 years now	been designated as Nature Parks. Marine
			the coastal zone.	abraded rocky platforms	dominates the land-use	reserves have been designated or are in the
			- Impact of marine	and narrow beaches;	pattern of the area,	process of designation. They include
			structures on the	· Haifa Bay - bounded by	particularly the two	offshore rocky areas rich in marine flora
			shoreline.	the Acco promontory on	major population	and fauna, and offshore rocks and sections
			- Public access to the	the north and the Carmel	centres of Tel Aviv and	of sandy shores important for sea turtles.
			coast.	mountain range on the	Haifa. The narrow	
			- Beach and cliff	south;	coastal strip is the focus	
			protection.	· The Carmel coastal	of the country's	
			- Pollution prevention.	plane - between Cesarea	economic and	
				and Haifa, consisting of	commercial activity.	
			Main conflicts arise	three low parallel ridges	The coastal strip also	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			mainly from population	three low parallel ridges	The coastal strip also	
			pressure, urbanization and	of calcareous sandstone,	contains the most fertile	
			land-use conflicts on the	parts onshore and parts	agricultural land of	、 、
			coastal zone.	offshore with relatively	Israel, especially for	
				narrow sandy beaches;	citrus production. The	
				and	coastal strip	
				· South of Cesarea - here,	encompasses several	
				sandy beaches are	nature reserves (mainly	
				occasionally interrupted	river mouths and rocky	
				by sections of calcareous	shores), national parks	
				sandstone cliffs up to 40	(beaches of high value	
				m high.	for recreation in natural	
					surroundings and sites	
					of archaeological	
					interest) and marine	
					reserves.	
Israel	some 50 km	Hadera river ⁸⁵	During mid 1978 to mid			
	north of Tel-		1980 the cooling basin of			

⁸⁵ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
	Aviv		the Orot Rabin electric			
			power station was built on			
			the northern bank of the			
			Hadera river.			
			Since the construction of			
			its breakwaters significant			
			changes were detected on			
			the beaches south to the			
			cooling basin, but a			
			significant accretion			
			occurred on the beach			
			north to the lee breakwater			
			for a distance of about 1.5			
			km, and erosion some 2 to			
			2.5 km further north. The			
			accretion has been			
			attributed mainly to			
			special local conditions			
			which are predominant			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	racterization
			Description	Characterization		
					Social – Economic	Policy & Management
					Facts	
			there (closed sedimentary			
			cell), while the erosion			
			was attributed to local			
			coastal developments			
			lacking coastal			
			engineering involvement.			
		Herzliya coast ⁸⁶	A very large marina was			
			constructed between 1991			
			and spring 1992 at			
			Herzliya coast 4km south			
			of the ancient Apollonia			
			harbour site. Following			
			the completion of the			
			marina and of the			
			detached breakwaters,			
			beach erosion of up to			
			25m occurred north to			
			them along about 3km of			

⁸⁶ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			coast.			
Israel		Tel-Aviv Marina ⁸⁷	Construction of the Tel-			Since its construction it requires periodic
			Aviv Marina was			dredging of its entrance, almost every year.
			performed between			
			September 1970 and fall			
			1972. Its entrance is at –			
			5m water depth			
Israel	30 km south of	Ashdod ⁸⁸	During 30 years of		The largest coastal	
	Tel-Aviv		operation the port induced		structure built on the	
			trapping of about 4.5		coast of Israel has been	
			million m ³ of sand at its		modern deep water port	
			upstream coast side but no		at Ashdod.	
			erosion was detected on			
			the near downstream			
			rocky coast, as it has been			
			eroded by sand mining			
			prior to the port			
			construction.			

⁸⁷ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
Israel	south to	Ashdod marina ⁸⁹	Ashdod marina was built			Requiring frequent dredging operations.
	Ashdod port		with its main breakwater			
			head at -5m water depth.			
			It already trapped a			
			significant amount of sand			
			south to the marina, and is			
			encountering significant			
			sedimentation in its			
			entrance.			
Israel	south to	Ashkelon ⁹⁰	Marinas as well as 3 new			
	Ashdod		detached breakwaters to			
			the north of it were built at			
			Ashkelon, north to the			
			Dlila beach, where 3			
			detached breakwaters			
			were built in the late			
			1980's.			

⁸⁸ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i
⁸⁹ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i
⁹⁰ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	racterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			It resulted in			
			sedimentation behind the			
			detached breakwaters and			
			significant erosion on			
			about 3km of coast north			
			to them.			
Israel	10km south to	Zikim ⁹¹	Between fall 1973 and			To protect it against silting, two groins were
	Ashkelon		summer 1974 a small			built, one north of the harbour, only 80m
			service anchorage was			long, in 1974, and another one 160m long
			built at Zikim for the			to the south, in 1975.
			Eilat-Ashkelon oil pipe-			to prevent further beach erosion a rubble
			line, with its entrance in			mound low coverage was placed there.
			3m water depth.			
			Sedimentological changes			
			at the beach resulted			
			almost immediately. The			
			erosion to the north was			
			so significant that the			

⁹¹ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			beach rock was exposed			
Italy	Regione	Cirqaccio -	A sandy beach of reduced	Coastal characteristics:	Socio-economic	Engineering techniques:
	Campania,	Ciracciello ⁹²	extension. From the land	• Study area: 1km	activities: Tourism	Beach drainage system, breakwater
	Province of		side, the shoreline appears	(850m of BMS);	The most important	Policy options:
	Napoli, Isle of		like a thin strip of sand	Sedimentary cell: 1km	economical activity in	Hold the line
	Procida		bordered by a cliff on the	• Type of coast: sandy	the island is the fishing.	In Procida island, except for few
			back-beach, whose height	beach (fine to medium	Because of the nearness	breakwater, there is not a beach protection
			decrease slightly going	sand)	of the island to Napoli a	policy, but the public administration wants
			from Punta Serra to the far	• Tidal regime:	lot of Procida	to avoid the use of severe protection works
			South of the beach. The	microtidal (0.3m)	inhabitants work in	and for this reason they are testing the BMS
			violent sea-storms	• Range of waves:	Napoli and travel daily.	solution. A complete monitoring program is
			provoked both the coastal	màx. 4m	The second economical	performing in the beach interested by BMS.
			erosion and cliff damages	The south Tirreno	activity is the tourism,	The program includes morfological and
			with consequent slides	weather conditions are	connected with the very	hydraulics (i.e. water table level) measures.
			whose results are still			These measures, at the moment partially
			evident on the beach.	the rest of Mediterraneo		available, have to be processed in next
			The coastal erosion has	sea, to the Azores		months.

⁹² Source: Eurosion (website), Shoreline Management Guide <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			significantly cut down the	anticyclone position.		
			beach and the sea attack	During the summer this		
			has already reached the	high pressure system is		
			foot of the cliff,	situated to the northern		
			threatening its integrity.	part of its annual cycle		
			The erosion reasons are	protecting the dock from		
			due partly to natural	the influence of Atlantic		
			phenomena and partly to	depression systems.		
			man actions. Causes are:	During the winters the		
			• lack or reduction in	Azores anticyclone		
			sedimentary	moves southward failing		
			contributions coming	its protecting effect, so		
			from progressive	the Mediterraneo sea is		
			dismantling of cliffs	interested to the transition		
			neighbouring to the	of Atlantic depression		
			site	crossing the dock during		
			• lack or reduction in	few days.		
			sedimentary	Coastal characteristics:		
			contributions coming	• Study area: 5 km		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			from the mainland (not	; Sedimentary cell: 5		
			due to the human	km		
			presence);	• Type of coast:		
			• a sand withdrawal in	Sandy beach		
			the submarine beach	• Tidal regime:		
			happened some years	microtidal		
			ago	• Predominant		
			• making of human	wave direction: E or		
			structures close to the	SE		
			emerged and back			
			beach.			
Italy	Sicilia,	Giardini –	The bay of Giardini Naxos		Socio-economic	Policy options:
	Province of	Naxos ⁹³	is situated in the Northern		activities: Tourism	Hold the line
	Messina,		sector of the Ionian coast		The town of Giardini	Engineering techniques:
	municipalities		of Sicily (Italy), between		Naxos has about 10,000	Breakwaters, groynes, beach nourishment,
	of Taormina		the towns of Messina and		inhabitants and it is	seawall, detached breakwater.

⁹³ Source: Eurosion (website), Shoreline Management Guide <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
	and Giardini		Catania.		characterized by a	In the 1970s and 1980s and until the early
			Over recent years several		strong tourism with	1990s, the only projects for erosion
			stretches of the coast of		plus than 1 million	prevention were for a rigid type of barrier,
			Giardini have been		tourists per year.	consisting of structures oriented in various
			victims of an intense			directions with respect to the shoreline.
			erosive activity, caused			These structures were always emergent and
			and aggravated by a series			were rarely placed at a sufficient distance
			of man-made			from the shore to b#337199e effective, in
			constructions: within the			consequence of that they had a limited
			hydrographic basin (check			efficacy causing further erosion problems
			dams); along the coast			downdrift. On the basis of these
			(subparallel breakwater			observations the Regional Department of
			barriers); or directly at sea			the Environment (ARTA) under the
			(harbour quays).			pressing of the EU, published a public
						announcement, within the project for public
						works from 2000 to 2006, which contained
						the guidelines for the definition of priority
						areas to be protected and the type of
						projects to be adopted, as well as the

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
						various stages.
						The aim of the announcement was "removal
						of the causes of deterioration and/or erosion
						in the coastal areas, by means of the
						restoration of the natural conditions which
						led originally to the formation of the
						shoreline, with particular reference also to
						building activities inland, to the recovery
						and restitution to their natural state of the
						wet and dry river courses and the
						restoration of the solid littoral transport;
						particular attention is to be paid also to the
						effects on an increase in tourist potential,
						the recovery of state property and the
						protection of private and public goods from
						sea storms".
Italy	Sicily	San Vito lo Ca	<i>upo</i> ⁹⁴ Consistent erosion along	g Sea cliffs and inlets,	Human activities	A gradual extension of harbor breakwaters.
			the east portion of the	stony beaches, coastal	include arable and	

⁹⁴ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			beach has been observed	sand dunes and sand	stock-farming, fishing,	
			over the last decades. The	beaches, sclerophyllous	hunting, tourism and	
			extension of the harbour is	scrub, garigue and	leisure96.	
			largely responsible for the	maquis95.		
			erosion taking place along			
			the San Vito Lo Capo			
			beach. A removal of a			
			previous harbour			
			extension would, for the			
			major portion of the			
			beach, result in an			
			accretion			
Italy	Po delta	Goro mouth ⁹⁷	The examined area is	Coastal characteristics:	The most important	Engineering techniques: Nourishment,

⁹⁵ Source: United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC)(website), <u>http://ims.wcmc.org.uk/ipieca/species/iba/ITALY.html</u>

⁹⁶ Source: United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC)(website), <u>http://ims.wcmc.org.uk/ipieca/species/iba/ITALY.html</u>

⁹⁷ Source: Eurosion (website), Shoreline Management Guide, <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			located in the right side of	• Study area: 6km	activities of this area	groyne, revetment, dune rebuilding
			the Goro Po mouth. This	• Type of coast:	are referred to fishery	Policy options:
			is a deltaic littoral area,	delta and beaches	that, from '80 years,	Limited intervention, hold the line
			mainly characterized by	(with fine- medium	became the main profit	Many policies concur to sustain the
			bars sometimes related to	sand)	for the inhabitants, after	maintenance of this area: the regional
			wide spits evolution, that	• Tidal regime:	the introduction of	policy (Environment Councillorship- Soil
			edge large inner land	micro tidal	breeding of clams	and coasts Defense) aims to safe the areas,
			lagoons with high	• Other: Land	(Tapes philipinarum)	when populated or industrial activities
			anthropic pressure.	subsidence	inside the lagoon, and	could be damaged by natural hazards. Po
			Nowadays, in Goro Po	The physical processes	of mussels in the in	Delta Natural Regional Park policy is to
			area, a sandy beach edged	induce a longshore	front sea.	keep relevant natural areas and, when
			by coastal dunes ridges	transport connected to		possible, to restore the natural value of
			and submerged bars on the	Sirocco and Levanter		damaged areas, mainly trough eco-
			bottom are present.	winds; The sedimentary		compatible actions. The Goro Municipality
			In the last tens years 8	supply for the Goro spit		and the Ferrara Province policies aim to
			million m3 of sediments	are mainly due to Goro		safe the economic activities and the natural
			have nourished the sea	Po river contribute and,		value of this land.
			bottom in front of Goro	partially, comes from		
			spit, but great part of these	reworked sediments		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			counterbalance the local	coming from northern		
			natural and human	beaches with a		
			induced subsidence.	transportation average		
				about of 180 millions m3		
				every year.		
Italy	La Liccia,	Lu Litarroni ⁹⁸	The distribution of the	Coastal characteristics:	Socio-economic	Engineering techniques: No Actions Policy
	Regione		dike set strongly affects	• Study area:	activities:	options: Do Nothing
	Autonoma		coastal morphology by	20km; sedimentary	Tourism, camping,	Of fundamental importance is the analysis
	della Sardegna,		creating natural barriers to	cell: 5km + 5km	agriculture, nature	of "progettualità" deriving from the socio-
	Province of		longitudinal transport,	• Type of coast :	conservation	economic energies used for planning,
	Sassari,		defining physiographic	hard rock coast,		programming (in particular of the local
	Comune di		entities and creating	beaches (from fine	Tourism represents one	development programs, the instruments for
	Aglientu		tombolos and isolated	sand to coarse sand,	of the predominant	urban development) and from those which
			rocks. La Liccia, Rena	pebbles, cobbles) and	sectors of the local	regard actions in the area of the Quadro
			Majori and Bureddaggia	dunes	economic systems and	Comunitario di Sostegno also with the
			are highly exposed	• Tidal regime:	has influenced all other	recent instrument of "Progettatione

⁹⁸ Source: Eurosion (website), Shoreline Management Guide <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			beaches, liable to very	microtidal	forms of the use of	Integrata Territoriale" (PIT).
			intense swell with modest	• Range of waves:	those parts of coast and	With these reports it will be possible to
			SW-NE net energy flow.	maximun h =11	sea, who have oriented	verify a new scheme of territorial order,
			Naracu Nieddu and Lu	meters, 1 s period	themselves towards an	which directly originates from knowledge
			Litarroni beaches are	The coast under study has	organisation suitable for	about the intentions of the local
			poorly exposed, liable to	been subdivided into 5	the needs of tourism.	administration and the economic world in
			intense swell with mild	physiographical units.	Tourist activities	relation to the two principal objectives of
			SW-NE net energy flow.	The physiographic area	include various	development:
				includes about 22 km of	compartments of	• Strengthening and re-establishing
				coastline, 10 of which of	quality of the	entrepreneurship by productive
				sandy beach, 5 of low	agricultural nutrition	investments in principally tourism-related
				rocky coast and 7 of	sector (to think about	activities,
				cliffy coast. The	wine, cheese, bread and	• Realisation, alignment and
				outcropping rocks are	so on) and furthermore	completion of infrastructural devices to be
				those related to the	traditional and artistic	provided by the public (water pipes, the
				Hercynian cycle, with the	trade or craft	net of sewers, recycling) and services
				typical sequence of	(fabrication of baskets,	
				intrusive events	carpets, ceramics,	
				represented by tonalites,	knives, leather, wooden	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
				granodiorites and	objects etc.).	
				leucogranitic plutons.		
				The studied area includes		
				includes only the sectors		
				B and C. The wave-cut		
				(cliff) stretches of coast,		
				oriented according to		
				these lineations are		
				considerably fractured		
				and crossed by tectonic		
				lines perpendicular to the		
				coast, on which processes		
				of linear erosion and deep		
				valleys have evolved. All		
				physiographical units		
				under study present		
				maximum exposure to the		
				winds and waves from		
				west and north-west. The		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
				morphology of the		
				submerged beaches of		
				north western Gallura is		
				strongly affected by the		
				outcropping of the		
				crystalline basement that		
				determines its		
				geomorphological		
				arrangement		
Italy	Toscana	Marina di Pisa,	Approximately 7km of	Coastal characteristics:	Socio-economic	Engineering techniques: Seawalls, detached
		Marina di	beaches at Marina di	• Study area: 8.5 km	activities: Tourism	breakwaters, submerged breakwaters,
		Massa ⁹⁹	Massa are experiencing	(Massa), 4 km (Pisa);		groynes, beach nourishment, submerged
			severe erosion as a	sedimentary cell: 65		nourishment, geotextiles
			consequence of the	km		Policy options: Hold the line
			construction of an	• Type of coast: beach		The new structure intercepts the southward
			industrial harbor at	(fine to medium sand),		longshore sediment transport, inducing a

⁹⁹ Source: Eurosion (website), Shoreline Management Guide,<u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			Marina di Carrara in the	artificial coast		sedimentary deficit to downdrift beaches.
			early 1920s. The new	• Tidal regime:		Different types of hard structures, such as
			structure intercepts the	microtidal		seawalls, breakwaters and groins, were built
			southward longshore	• Range of waves: Hs		in the study area in order to protect the
			sediment transport,	=5.5 m and Ts=10 s		seaside resort and the coastal highway from
			inducing a sedimentary	with recurrence time of		shoreline retreat. Nevertheless, beach
			deficit to downdrift	20-30 yr.		erosion proceeded and tourist industry is
			beaches.			now suffering from this retreat.
Italy	northern	Comacchio	Sandy coast between	the study area can be	Tourism, fishery	In 1990 local defences with Tubi Longard
	Adriatic Sea	coast ¹⁰⁰	Porto Garibaldi and Porto	divided into three		and artificial nourishment (40,000m ³ of
			Corsini.	physiographic sub-		sand) were used to protect the coastline, but
			The main problem in the	unities, extending from		this management was insufficient. The
			area is beach erosion. This	the southern jetty of Porto		eroded sediment was transported northward
			is due to the evolution of	Garibaldi and the Reno		accumulating south of the Porto Garibaldi
			the delta of the Reno	River mouth, to the Casal		jetty, where an average beach accretion of
			River, and to the effects of	Borsetti, and from this		50-70m (with peaks of 120m) was detected
			past anthropogenic	latter to the northern jetty		from 1978 to 1993. The unit from the Reno
			impacts that modified the	of Porto Corsini.		River mouth to Casal Borsetti is heavily

¹⁰⁰ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			sediment transport			armoured with beach revetments, which
			dynamics of the beach. An			were installed in the 1980s. The
			important factor affecting			unprotected beaches in this area are affected
			the morphological			by strong erosion, 80m in the last 15 years
			evolution of the site is			(figure 11). The third physiographic unit is
			land subsidence. This			characterised by a southward littoral drift,
			caused an important			which has experienced accretion of about 4
			modification of the			m/year in the last decade or relative
			relative elevation of the			stability. This is due to the drift of the
			ground at sea level,			artificial nourishment which was put in
			increasing the beach			place at the end of the 1980s and also
			erosion.			because of other protection works. In the
			From the start of the			last 30 years, because of coastal erosion, the
			1980s the first unit of			littoral strip that separates these lagoons
			beach was affected by			from the sea became narrower, and was
			severe erosion, because of	,		artificially defended. In the same time the
			the migration of the Reno			Canale Gobbino mouth closure took place,
			River mouth 2km south,			reducing even more water exchange
			causing significant coastal			between the lagoon and the open sea

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			modifications. In the			
			1978-1983 period, the			
			beach eroded 120m.			
Italy	Lido Adriano,	Marina di	During the last century,	Coastal characteristics:	Socio-economic	Engineering techniques: Seawalls,
	Regione	Ravenna ¹⁰¹	the entire coastline has	• Study area:10,5 km	activities:	submerged, non submerged breakwaters,
	Emilia		been strongly influenced	• Type of coast:	Tourism and recreation	groynes, jetty and nourishments.
	Romagna,		by two main factors: the	beaches (with fine	The major function of	Policy options: Hold the line
	Provincia di		building and progressive	sands)	the coastal area is	The actual beach management strategy,
	Ravenna,		extending of Ravenna Port	• Tidal regime: micro	tourism and recreation.	according to the present knowledge, began
	Comune di		jetties (whose present	tidal		in 1997, with the design of a new coastal
	Ravenna		length is about 2800 m)	• Range of waves :		semi- submerged protection structures
			and the lack of sediment			required because the previous submerged
			supply, formerly coming			breakwater and groins made of sand bags
			from the river consider all	• Other: land		resulted ineffective.
			the negative effects			
			caused by subsidence and	The coast is characterised		
			the high anthropic impact	by sand-beaches covering		

¹⁰¹ Source: Eurosion (website), Shoreline Management Guide, <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			due to beach-tourism	muddy-clayey materials		
			management.	derived from more		
			The coast have	ancient swampy and		
			experienced a subsidence	alluvial deposits. This		
			grater than 1 m in the last	area is the result of the		
			40-50 years; natural rates	interaction between river-		
			of 2-3 mm/y of magnitude	delta and marine coastal		
			have been in fact greatly	processes.		
			accelerated in the last half			
			century by fluid (water	The seawater		
			and gas) extractions from	level rising in the North		
			the underground. At	Adriatic Sea is also due		
			present, along the coastal	to an intense wind action		
			areas, the subsiding rates	coming from south-east,		
			are, on average, 5- 6	the Sirocco wind,		
			mm/y, with peaks of 9- 10	associates to depressional		
			mm/y. The coastline	fields, which move		
			experienced a huge	towards the East. The		
			erosion rate in the	prevailing sea is from the		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Chara	cterization
			Description	Characterization		
					Social – Economic	Policy & Management
					Facts	
			southern part (from the	SE (influenced by		
			Fiumi Uniti river mouth to	Sirocco wind) close to the		
			about Punta Marina) and a	shoreline, and from the		
			significant accretion in the	NE (influenced by Bora		
			northern part (close to the	wind) where water depth		
			jetty).	is higher than 3 m.		
			In Marina di Ravenna the			
			emerged beach shows a			
			marked accretion (about			
			140-150 m in the last 50			
			years) while, where water			
			depth exceeds 3-4m, a			
			slight negative altimetric			
			budget can be observed.			
			More than 100 bathhouses			
			are located on the 10.5 km			
			of beaches. These			
			structures damaged and			
			destroyed the dune bar			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			and, because of an	L		
			uncontrolled use of the			
			beach, they caused heavy	r		
			and continuous impacts on	L		
			the existing residual dune	,		
			bars and on the pinewood.			
Italy	Genoa	The beach of	Has been subject to a	L	The construction of a	After the nourishment work in March 2000,
		Vesima ¹⁰²	strong erosive trend.		coastal road, the main	the width of the dry beach was stable; the
			On the contrary, in the	,	railway line, and some	estimate of nourishment material
			1970s there was a period	l	breakwaters, to protect	(20,000m ³) and of the material left on the
			of temporary and limited	l	fragile coastal areas,	dry beach after 2 years (4800m ³) indicates
			progradation of the beach	L	has changed the coastal	that a remarkable quantity of sediment was
			due to the beginning of		dynamics and the	taken from the shoreface to form the
			new dumping, which was	•	equilibrium of this	nearshore zone.
			carried out for the		stretch of the coast.	
			building of a new railway	r	from 1800 to 1960,	
			and a motorway. During	T S	there was increasing	5
			the 1980s and 1990s, the	,	erosion along the entire	

¹⁰² Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			beach showed a new and		shoreline, due to the	
			greater erosional trend,		quarrying of sandy	
			essentially because of	, ,	sediments from the	
			reduced contributions		rivers and the beaches.	
			made by the local		This process culminated	
			watercourses and littoral		in the 1950s and 1960s	
			drift		with the additional	
					impact of demand for	
					beachside housing and	
					holiday structures.	
Italy	Regione	Marinella di	The pilot zone of	Coastal characteristics:	Socio-economic	Engineering techniques: Groynes, detached
	Liguria,	Sarzana ¹⁰³	Marinella di Sarzana is	• Study area: 2,5 km ;	activities: Tourism	breakwater, jetty, artificial island,
	Province of La		characterized by a sandy	Sedimentary cell: 70 km		nourishment
	Spezia –		beach with a total length	• Type of coast:		Policy options: Hold the line
	Municipality		of approximately 2.7 km,	beaches (with fine sand)		Currently, the beach of Marinella di
	of Sarzana		which extends from the	• Tidal regime: micro		Sarzana is protected by different kinds of
			Magra River mouth -on	tidal		hard structures like groins, breakwaters and

¹⁰³ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			the northwest- to the	• Wave climate: storm		circular artificial islands made of rocky
			Parmignola Creek mouth	waves coming from		stones around a concrete ring. This hard
			to the southeast. The study	WSW (240°)		engineering stopped shoreline retreat but
			area constitutes the			induced heavy impact on the coastal zone.
			northern part of the			The Administrations of Regione Liguria
			physiographic unit that			and Regione Toscana recently co-financed
			extends from the Magra			an innovative project aimed at reducing
			River mouth to Livorno,			these impacts and increasing the beach
			and the Magra River is the			surface in order to re-launch tourist activity
			only source of sediments			in the area.
			for the beach. The beach			
			at Marinella di Sarzana			
			experienced severe			
			erosion since the end of	,		
			the XIX Century as a			
			consequence of the strong			
			reduction of the Magra			
			River's sediment load due			
			both to changes in land			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			use and, later, to human			
			action in the river basin,			
			with intense sand and			
			gravel dredging from the			
			river bed.			
			Being a deltaic area,			
			erosion started in			
			proximity to the river			
			mouth and moved			
			gradually downdrift			
			toward the southern limit			
			of the study area. In the			
			meantime, the southern			
			neighboring beach at			
			Marina di Carrara			
			experienced accretion			
			because of the			
			construction of the Marina			
			di Carrara harbor which			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			begun in the 1930's. The			
			construction of the harbor			
			created a physiographic			
			sub-unit between the			
			Magra River mouth and			
			the harbor itself.			
Italy	located on the	the shoreline south	Particularly, from the mid-			In order to protect the coastal segment in
	shore of the	of <i>Gombo</i> ¹⁰⁴	19th century to 1954,			front of the presidential villa at Gombo, a
	Ligurian Sea,		retreated continuously.			pair of detached breakwaters, were built in
	in Tuscany,		Extreme retreat occurred			1962, two other segments were completed
	located 4.5 km		north of the Arno outlet			in 1966 and the fifth segment was built in
	north of the of		and gradually decreased			1968 further north.
	the Arno River		northwards. In the period			The three southernmost tombolos facing the
	outlet		1938–1954, Gombo			longshore current became the main
			enjoyed some sand			sediment trap, causing a lee-side erosional
			supply from the eroding			effect to emerge within the protection
			beaches located to its			scheme of the segmented detached
			south and became an			breakwaters. The oblique incident waves

¹⁰⁴ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			inversion point, i.e., north			enter through the gaps and maintain in the
			of the site the shoreline			inshore the depleted longshore drift,
			started to prograde.			causing the shoreline configuration in the
			During the 1954–1967			lee of the northern breakwaters to develop
			period, shoreline retreat			into a prograding log-spiral bay.
			continued to the north and			
			included the Gombo area			
			up to Serchio river.			
Italy	located in	Cecina River	experienced severe	Surveys conducted	Reducing the	Beach stabilization conducted from 1987 to
	central Italy	mouth ¹⁰⁵	erosion.	before, during and after	recreational use which	1992, has included a stretch of coast
			The main cause of beach	project completion	contributes a large part	approximately 1.7 kilometers north and 1.1
			erosion is river bed	indicate that the shoreline	to the economy of the	kilometers south of the River mouth.
			quarrying carried on up to	prograded for	area.	Emerged and submerged groins were
			1978 along the Cecina	approximately 5.65		constructed, and approximately 92,500
			River.	meters along the northern		cubic meters of sediment were used to
				beach, and for		nourish the beach during the period under
				approximately 5.50		study. In addition, a submerged breakwater
				meters along the southern		was placed at the 2 meter isobath on the

¹⁰⁵ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
				beach. Bathymetric		southern beach and on a very limited area
				surveys show a sediment		of the northern beach. In addition, a
				surplus of 140,000 cubic		submerged breakwater was placed at the
				meters in the northern		2meter isobath on the southern beach and
				area, and of 220,000		on a very limited area of the northern
				cubic meters in the		beach.
				southern area		
Italy	Regione Lazio,	Vecchia Pineta ¹⁰⁶	Coastal band of the	e Coastal characteristics:	Socio-economic	Engineering techniques:
	Provincia di		examined site i	s • Study area: 400 m	activities: Tourism	Historical: submerged breakwaters,
	Roma,		constituted by a sand	• Type of coast:		nourishments. Present: beach drainage
	Lido di Ostia		beach of reduced	d beaches (with fine and	Tourism is the main	-
			extension. From the land	d coarse sand)	socio-economic activity	Policy options: Hold the Line
			side the beach is bordered	d • Tidal regime: micro	of this place. Thus,	
			by a string of dune	s tidal (0,4 m)	hinterland and beach, in	The Regione Lazio carried out a lot of
			slightly decreasing going	• Wave climate :	spite of its remarkable	intervention firstly aimed to hold the line
			towards the shore. The	Direction of waves =	tourist interest, appear	and to a subsequently its advancing. In
			coastal girgle i	s 3rd quadrant	barely built with the	order to guarantee a long stability, every
			constituted by a lov	-	exception of the	non-protected action must be combined

¹⁰⁶ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
-					Social –Economic	Policy & Management
					Facts	
-			constituted by a low	v	restaurant and the	with a suitable maintenance service. In this
			extension sandy beach, o	$_{\rm f}$ The main wave motion,	cabins over the wharves	contest, it has been carried out the
			approx 40 m and weat	\mathbf{k} as far as intensity and	which do not weightily	installation of a new system of erosion
			gradient nearly 1:40. Of	n frequency, is from S and	interfere with the shore-	maintenance and coast resetting, BMS
			_			(Beach Management System). This new
			depth outline shows	a significant frequency	r	system has a double aim:
			system of one or two	o from W and NW. The sea	L	
			longitudinal bars.	currents are mainly a	L	• shore-line stabilisation and
				wind result, therefore		consequently maintenance low-
			The shore erosion	n strongly conditioned by	r	costs
			forecasts pointed out	a the weather variability	r	• get a further advancement
			global mass of approx	and, near the cost, by the	,	
			220.000 m3/year, shared	d structure of the		During the previous years a lot of passive
			in 100.000 m3/yea	r bathymetric lines. The		protection interventions have been
			toward North and 120.00	0 wind climate shows a	L	performed, but this actions allowed the
			m3/year South direction	, strong frequency	r	erosion phenomena to shift southward.
			with a net difference o	f predominance from NNE		
			20.000 m3/year in favou	r and NE. The greater		
			of the south side. During	g intensity events seem to		
			the previous decades thi	s be due to the areas	3	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			was compensated by	between SE and SW also		
			Tevere contributions but	showing a good		
			today, thanks to the works	frequency.		
			of river regimentation and			
			ground stabilisation, they			
			are decreased helping to			
			trigger erosion phenomena			
			along the entire shoreline.			
Italy	Liguria	Ligurian coastal	coastal erosion, habitat	coast, river basin and the	urban expansion,	overall policy, pollution control,
		area ¹⁰⁷	loss	adjacent coastal area,	population growth,	development control, infrastructure
				rocky coast, lakes/rivers,	tourism/recreation,	development, planning, monitoring
				island, peninsula, sandy	transport congestion,	
				beach		

¹⁰⁷ Source: Priority Action Plan <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=12&shortID=65#65</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	cterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
Italy	Abruzzo	Pescara ¹⁰⁸	sediment movement,	coast, river basin and the	urban expansion, water	
			coastal erosion,	adjacent coastal area,	pollution,	
			Funding of the Structural	rocky coast, grass and	tourism/recreation	
			Funds has part-financed	rangeland, lakes/rivers,		
			coastal	sandy beach		
			protection works, which			
			have contributed to beach			
			and dune			
			erosion further along the			
			coast, necessitating further			
			expenditure on yet more			
			coastal protection with			
			similar effects ¹⁰⁹ .			
Lebanon		Tyre Beach ¹¹⁰	The site is situated along	The area consists of	No information is	

¹⁰⁸ Source: Priority Action Plan <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=12&shortID=65#65</u>

¹⁰⁹ Source: Coastal Guide ICZM Information System, <u>http://www.coastalguide.org/icm/abruzzi.pdf</u>

¹¹⁰ A Directory of Wetlands of International Importance (1996).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			the Mediterranean	sandy stretches, at some	available about the	
			coastline of southern	places interspersed with	ownership of the site.	
			Lebanon near the town of	pebble areas and rocky	Parts of the area are	
			Tyre.	shelves with pools. The	irrigated for the	
			Seawater at the site is	beach and sand dune area	cultivation of	
			polluted by organic	are made up of a mixture	vegetables. Palm and	
			(sewage) and inorganic	of quartz and carbonate	citrus plantations occur	
			waste. The latter is caused	sands which have locally	further back. Stabilised	
			by illegal disposal of oil,	been compressed and	dunes are used for	
			and by heavy metals,	transformed into rocks.	grazing by small herds	
			detergents, etc. Dumping	Cretaceous limestones	of cattle, which are also	
			and littering are a problem	underneath form an	led to freshwater	
			too. Urbanisation from the	aquifer that provides the	sources on or near the	
			Tyre area has been going	major part of the region's	beach. In summer, the	
			on for over a century.	water, and overlaying	area is visited by a large	
			Coastal erosion by storms	impermeable layers have	number of tourists and	
			and illegal sand mining	allowed the development	at that time, some	
			also threaten the site.	of artesian wells from	fishing also takes place.	
			Disturbance of wildlife is	cracks and faults.	At Ras el Ain there are	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			a problem during the		three artesian wells of	
			tourist season.		which the walls were	
					built by the Phoenicians	
Malta	Island of Malta	Xemxija - Ghajn	The case study areas of	The Maltese Islands are	With a total land area of	Evidence from aerial photography suggests
	(NUTS level	Tuffieha ¹¹¹	Xemxija and Ghajn	almost entirely made up	316 km2 and a total	that the sandy beach at Xemxija Bay
	3), San Pawl		Tuffieha are located	of sedimentary rock	population of 378,132	(although relatively small) has eroded in a
	il-Bahar Local		within the Pwales graben,	deposited in a marine	(Census, 1995) the	period of almost 4 decades, as a result of
	Council		which is defined by two	environment during the	Maltese Islands have	measures to artificially realign the coastline.
	Mgarr Local		faults. The beach material	Oligo-Miocene period.	one of the highest	
	Council		comprises sand with a	These limestones and	population densities in	An afforestation project was carried out
			varying admixture of silt	clays form a series of	the world. Due to its	along the clay slopes at Ghajn Tuffieha, in
			and some clay. The sea	stratigraphic layers of	small size the economy	the late 1960s. It is assumed that such a
			bed in Ghajn Tuffieha is	varying composition and	depends heavily of	project was undertaken to stabilise the
			relatively shallow in the	hardness.	foreign trade and the	slopes. It is evident that throughout the
			embayment. In contrast to		Islands rely	development of Xemxija and provision of
			Ghajn Tuffieha Bay, the	Xemxija	substantially on imports	infrastructure, no consideration has been
			seabed in Xemxija is	Coastal characteristics:	for energy, industrial	given to coastal erosion issues. In the

¹¹¹ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			marked by a gentle slope	• Study area: 3,6	supplies and consumer	absence of any policy measure, the
			where depths reach 25m at	km	goods.	shoreline has been subjected to
			the mouth of St. Paul's	• Type of coast:	Tourism is a significant	considerable changes that have led to the
			Bay. The sandy beach at	beaches (with fine sand)	contributor to the local	loss of the sandy beach and the saline
			Ghajn Tuffieha occupies	• Tidal regime:	economy. Southern	marshland behind it as well. The legal
			half of the bayhead in the	micro tidal	coast, dominated by	protection afforded to Ghajn Tuffieha has
			form of a wedge-shaped		cliffs has been	slowed down the process if not eradicated
			belt, approximately 150m	Ghajn Tuffieha	dominated by	completely the source of coastal erosion.
			long and 25m wide,	Coastal characteristics:	agriculture	
			tapering gradually towards	• Study area:1,3	development.	Xemxija
			the south where it turns	km	Xemxija	Engineering techniques: Revegetation.
			into a narrow, 100m long	• Type of coast:	Socio-economic	Policy options: Do Nothing
			sand/cobble beach.	beaches (with fine sand)	activities:	
			Geological formation of		Tourism and recreation,	Ghajn Tuffieha
			the Xemxija area in the	(with limestone	fishing berths	Engineering techniques:
			absence of significant clay	cobbles)		Revegetation.
			exposures, suggests	• Tidal regime:	Ghajn Tuffieha	
			limited material	-	Socio-economic	Policy options:
			availability.		activities:	Limited intervention

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			The aerial photos indicate		Nature Conservation,	
			that erosion is		cultural heritage;	
			predominant in the areas		tourism and recreation	
			where human intervention			
			took place, primarily on			
			the clay slopes with more			
			debris accumulating at the			
			base of the cliff.			
Malta	Northwest area	from Wied iz-	water pollution, air	coast, river basin and the	population growth,	overall policy, preparatory activities,
	of the Maltese	Zurrieq to Salini	pollution, soil pollution,	adjacent coastal area,	tourism/recreation,	pollution control, development control,
	Islands	Bay ¹¹²	water shortage, coastal	wetland, rocky coast,	over-fishing,	resource management, institutional
			erosion, habitat loss	grass and rangeland,		strengthening, infrastructure development,
				lakes/rivers, bay,		biodiversity conservation, urgent measures
				island/peninsula, sandy		development, planning,
				beach		education/awareness, monitoring,
						networking
Morocco		Moulouya River ¹¹³	Before the construction	The largest river in		

¹¹² Source: Priority Action Plan <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=12&shortID=65#65</u>

¹¹³ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			the lower Moulouya River	Morocco, draining		
			pattern was sinuous to	approximately 53,500		
			meandering and the	km ² in the eastern		
			river's mouth was much	Morocco.		
			wider than it is today	The upper basin is		
			(figure 20). The fluvial	separated from the lower		
			load was significant	floodplain by the large		
			enough to lead to the	Mohamed V reservoir		
			progradation of deltaic	which traps most of the		
			deposits in the eastern part	sediment delivered from		
			of the river's mouth. After	the upstream region		
			construction of the	Sediment trapping by the		
			Mohamed V dam, the	dam's reservoir affected		
			river's mouth and the	the morphological		
			coastline reacted with	evolution of the coastline		
			remarkable adjustments.			
			Indeed, given the weak			
			fluvial hydraulic power,			
			the marine influences			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			have been reinforced	,		
			leading to the reworking	ŗ		
			of the shoreline sediments	,		
			narrowing of the mouth			
			area, and the accumulation	l		
			of mouth bars. The most	t		
			effective waves and the			
			induced sand transport are			
			directed westwards.			
			The net littoral transport	t		
			was estimated as	t		
			approximately 165,000 m ²	5		
			year ⁻¹ . The sand	l		
			transported was	5		
			responsible for the			
			accretion of the west	t		
			coast, whereas the east	t		
			coast retreated because in	t		
			was not fed by fluvia			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			inputs.			
The		Gaza coast ¹¹⁴	During 1997, a fishing			
Palestinian			port was built off Gaza			
Authority			coast, extending with its			
			breakwater head to a			
			water depth of 5.5m.			
			Significant sedimentation			
			resulted to the south of the			
			harbour and			
			correspondingly erosion			
			on the coast downstream			
			to the harbour occurred.			
Slovenia	Municipality	Slovenian coast ¹¹⁵	Slovenian coast is a	Coastal characteristics:	Socio-economic	Engineering techniques:
	of Piran and		shallow marine basin,	• Study area: 10	activities:	Seawall, submerged breakwater, dyke
	Municipality		with maximum depths in	km	Nature conservation,	Policy options:
	of Izola		its central part 20-25 m	• Type of coast:	tourism	Hold the line, limited intervention, move
			and average depth of 17	hard and soft rock		seaward

¹¹⁴ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i ¹¹⁵ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			m, situated at the junction		Tourism development	
			of the Dinaric Alps and	beaches (with shingle),	in Piran, and other parts	These parts of the coast are protected by
			the Alps. Sea erosion of	artificial coastline.		various artificial structures ranging from
			rock coastline through the	• Tidal regime:		seawalls and rip rap breakwaters to rock
			waves and tide, is of low	micro tidal	needs for new	dikes. Cliffs in inhabited areas are protected
			intensity due to small			by wire mesh, in exceptional cases also by
			driving forces. It is			concrete sills, stone walls and concrete
			comparable to erosion due		carrying capacity of the	walls. Areas of the coastal plains are
			to weathering on slopes		coast and the road	protected by seawalls and submerged rip
			inland. Shifting of		network. The	rap breakwaters.
			coasline inlands due to sea		urbanisation of the	
			erosion is pronounced		coastal strip together	
			only in uninhabitated		with the increasing	
			areas and nature reserves,		employment	which is implemented in most parts of the
			while the majority of	•	opportunities led to	coastal zone, that are urbanised or occupied
			inhabitated coastline is		intensive migration of	by intensive uses. Only the parts of the
			erosion protected by		inhabitants from	
			artificial structures.		hinterland to the coast.	uninhabitaded areas are subject to natural
			However, during			processes, and are left to natural dynamics,
			extremely high tide events			with the soft policy option of "limited

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Chai	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			extremely high tide events	5		intervention". In the area of the Port of
			the stretches of low coast	t		Koper, the policy option is to "move
			are flooded for some			seawardIn general, the approach to solving
			hours short periods	5		erosion problems of the coastline is local,
			several times a year.			using proper technical solutions and
						appropriate land use. Only the problem of
			The major changes in the			filling up the Gulf of Trieste with sediment
			narrow coastal strip in the			transported by rivers, is delt with regionally
			last decades (abandoning	Ţ		and internationally, trying to retain the
			of salt production in			sediments inland.
			Luclja, the construction of	ſ		
			tourist facilities including	5		
			yachtmarinas, the			
			development of the port of			
			Koper, infrastructure)			
			resulted in a serious loss	5		
			of natural coastline and	1		
			degradation of the coastal			
			ecosystems. There is less	5		
			than 20 % of natural	l		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			coastline left. Salt			
			extraction used to be one			
			of the important economic			
			activities in the area.			
Slovenia		Gulf of Trieste ¹¹⁶	Shifting of coastline		Because the Gulf of	several technical solutions were introduced
			inlands of the Gulf of		Trieste is shallow,	into the river systems to retain the eroded
			Trieste due to sea erosion	L	sedimentation of the	material inland. In the last decades, the
			is pronounced only in	L	eroded material to the	process of natural reforestation of
			uninhabited areas and	l	bottom of the sea poses	agricultural land is also taking place due to
			nature reserves, while the	,	serious problem to	abandonment of agricultural production.
			majority of inhabited	l	navigation of	This results in a trend that shows decline of
			coastline is erosion	L	transoceanic ships.	sedimentation in the sea.
			protected by artificial			
			structures. The highest			
			erosion progress is to be 6			
			cm per year, deduced	l		
			from skeleton washing	r,		
			away from the grave cut			

¹¹⁶ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			in the cliff about 900			
			years ago. All other			
			available published	l		
			sources are citing lower			
			erosion rates. Historical			
			data of cliff erosion next	t		
			to protection wall of Piran			
			Sv. Jurij church show	7		
			erosion progress of 1 cm a	l l		
			year. Measurements at	t		
			other sites gave values	5		
			between 1 cm and 2 cm.			
			In general, it could be	;		
			taken that average speed	l		
			of cliff shift at Slovenian			
			Coast is in the range from			
			several mm to several cm			
			a year.			
			Inland landslides,	,		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			torrential erosion and			
			riverbank erosion are the			
			most hazardous			
			phenomena in Slovenia.			
			Inland Erosion endangers			
			about 44% of Slovenian			
			territory and causes an			
			annual loss of 2,5 million			
			m ³ of soils			
Spain	Illes Balears	Can Picafort ¹¹⁷	Mallorca Island, located at	Coastal characteristics:	Socio-economic	Engineering techniques: Nourishment
	(Isle of		the western Mediterranean	• Study area:	activities:	Policy options: Limited intervention
	Mallorca),		Sea (Balearic Sea), is the	around 4 km ;	Tourism, Nature	The biological activity is strongly related to
	Alcúdia		greatest of the Balearic	Sedimentary cell:	conservation	the Posidonia Oceanica. Almost all the
			Islands. The area of	around 10 km		beings that form the sediment of the
			interest is located at the	• Type of coast:		beaches live around or depend on that plant.
			north-western sector of	beaches (with fine-	the coastal zone is	For that reason when we reduce the
			the Alcudia Bay (Can	medium sand		Posidonia Oceanica prairies we kill the
			Picafort beach). Alcudia	bioclasthic origin)	If the beach disappears	sediment factory of the Mallorca beaches.

¹¹⁷ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			Picafort beach). Alcudia	bioclasthic origin)	the economic engine of	sediment factory of the Mallorca beaches.
			Bay has a structural	• Tidal regime:	the area will also	As there is not any external supply when
			origin, as it is limited by	micro tidal	disappear. For that	the Posidonia Oceanica prairies are
			NE-SW Neogene normal	• Range of waves	reason the impacts of	destroyed we are inducing a beach retreat.
			faults at its margins,	$: \max H = 4 m$	the beach retreat in this	
			where Mesozoic materials	The origin of the	area will affect the	The adopted policy options in this area have
			outcrop.	sediments is mainly	inhabitants residing	
			At the subsiding sector a	Bioclastic (89%), being	inland, not also those	renourishment of the most affected beach,
			sand beach system with a	the lithoclastic fraction	who has a house near	the Can Picafort beach.
			wet zone onshore is	very low (11%). The	the beach.	
			present (Albufera	grain size of the Alcudia		
			d'Alcudia). On the other	bay sand has a 60 % of		
			hand, at the stable sector	medium sand (between		
			sand beaches and gently	0.25 and 0.5 mm), a 25		
			rocky coast (Plio-	% of coarse sand		
			Pleistocene eolianites)	(between 0.5 and 1 mm)		
			appears alternatively.	and a 15 % of fine sand		
			The studied sector of coast	(between 0.125 and 0.25		
			consists on 5 km long	mm).		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			beach (from Can Picafort	Tidal processes are		
			to S'Oberta) with a NW-	almost imperceptible and		
			SE orientation and opened	height wave do not		
			to the NE.	overpasses the 4 m in the		
			The studied shore shows	open sea. The bathymetry		
			erosion and accretion at	of the Alcudia bay is also		
			different places. The	gentle. Two independent		
			distribution of the erosion	sedimentary cells can be		
			and accretion sites is	defined in the Alcudia		
			mainly controlled by	Bay, a northern cell		
			human constructions	(studied area) and a		
			(dikes and harbours)	southern one. Wave		
			together with the	induced longshore		
			longshore transport and	transport can be		
			storms. The type of	considered as the most		
			erosion observed at	important process along		
			Alcudia Bay is a gradual	the Alcudia Bay, which at		
			sediment loss due to the	the studied sector has a		
			S-N longshore transport.	main SE-NW direction.		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
				Aeolian transport has also		
				a great importance but in		
				this case the sand dunes		
				evolve from North to		
				South (Servera, 1997).		
				Thus in the studied zone		
				the longshore sea		
				transport has a S-N		
				direction and the eolian		
				one has an N–S direction.		
Spain	Valencia	Castellón ¹¹⁸	The study zone is known	Coastal characteristics:	Socio-economic	Engineering techniques:
	Autonomous		the Valencian Oval, from	• Study area: 3,05	activities:	Serrallo Beach: groyne
	Community,		the Port of Castellón to	km	Industry, agriculture	Ben Afeli Beach: detached breakwater and
	Castellón		the mouth of the Mijares	• Type of coast:	and tourism	artificial nourishment
	Province,		River, including the	beaches (with pebbles,		De la Torre Beach: short breakwaters and
	Almazora		beaches of the Serrallo,	gravel and sand)		artificial nourishment
			Ben Afeli and De la Torre.	• Tidal regime:		

¹¹⁸ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Cha	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
				micro tidal (around		Policy options: Hold the line
			The section is regressive	2 1m)		The main functions of the coastal zone are
			by the concurrence of	• Wave climate:		related to the industry and agriculture
			factors that affect their	. predominant wave		(orange trees). The problems of erosion
			feeding. On the one hand,	direction= NE		have been tried to mitigate with hard works
			the section is leeward			of engineering, that have made vary the
			(downdrift) of the			alignment of the coast (2° in average value),
			Castellón Harbour and on	L		being faced the resultant of the surge and a
			the other hand, the	,		net coastal solid transport in this
			regulation of the Mijares			insignificant zone:
			River and the city-			• Serrallo beach: 1,400m long,
			planning pressure on	L		located after the Port of Castellón, only
			beaches. This causes an	L		has submerged beach, being the coastline a
			important erosion of			great longitudinal revetment made to
			adjacent beaches,			restrain the erosion and to protect of the
			characteristic of a	L		marine invasion.
			dominant coastal transport			• Ben Afeli beach: 450m long and
			towards the south, causing	T S		40m of average width, present two
			the disappearance of the	,		detached breakwaters that form a gravel
			dunes, exposing to low	,		beach.

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	racterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
-			territories to continuous	6		beach.
			floods.			• De la Torre beach: 8 groins cause
						its width variation between 45m and 15m.
			The variation of the sea	L		Its length is of 2,200m and is composed by
			level next to 1m, is crucial			gravel. In these beaches the works have
			because in the precoastal			been oriented nonsingle to the fight against
			area, great zones with			erosion but also to beach creation.
			level next to the sea level			The total barriers to the sediment passage,
			exist, since they are	;		as in this case are the Port of Castellón,
			formed by coastal barriers			suppose the maintenance by means of
			and old saltmarshes,	,		artificial works of hard engineering of the
			reason why any variation			beaches that are to leeward of the obstacle.
			of the same one can have			Of this form, while the obstacle stays, the
			influence in the future			erosive problems of the adjacent coastal
			evolution of the coast.			zone waters down will be more and more
						severe, needing continuously to invest in
						projects of regeneration and sand
						contribution, as well as in new defensive
						installations that maintain the coast and

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
						avoid the backward movement of the
						coastline. In fact, in the coast section, the
						Ministry of Environment has projected new
						engineer installations that will reinforce the
						existing ones already.
Spain	Catalunya	Ebro Delta ¹¹⁹	The Ebro Delta is located	Coastal characteristics:	Socio-economic	Engineering techniques:
	Autonoumous		in the northeast coast of	• Study area: 50	activities:	Dune nourishment, wind traps,
	Community,		Spain, in the province of	km	Natural park,	revegetation, beach drainage
	Tarragona		Tarragona. It represents	• Type of coast:	agriculture, fishery,	Policy options: Hold the line, Do nothing,
	province,		the main coastal delta of	delta, beaches (with	aquiculture, hunting,	managed realignment
	Amposta		the Iberian Peninsula and	fine - medium sand)	industry (salt), tourism	The actions of coastal engineering have
			one of most important of	and dunes	At the moment, the	gone fundamentally to the preservation and
			the Mediterranean.	• Tidal regime:	performances in the	recovery of the environment, trying to
			Morphologically it	micro tidal (0,25 m)	deltaic coast are marked	palliate and/or to diminish the impacts of
			presents a deltaic front, in	• Range of waves	by the presence of the	hard engineering measures. The
			which locates the present	: mean Hsig = 0,7m	Natural Park of the	performances will have to be directed to the
			mouth of the Ebro River	and $T = 4s$;	Ebro Delta.	integration of the natural and human

¹¹⁹ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			and two spits that partially	Predominant wave		aspects, using criteria of sustainable
			close the Fangar and	directions: N, E, S.		development, that allows to make
			Alfacs lagoons, located			compatible the different uses of the delta
			north and south			(fishing, agriculture, extraction of salt,
			respectively. The spit of	, ,		tourism) with natural and unique
			El Trabucador, that shows			ecosystems from biodiversity (flora and
			an approximated width of	,		fauna).
			250m and 6km long, is			
			closing the bay of Els			
			Alfacs in the south. The			
			coast length is of about			
			50km and presents an			
			emerged area of 325km2.			
			The predominant wave			
			directions are North,			
			South and East, which			
			produce sediment			
			transport towards the			
			northern and southern			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			hemideltas. The			
			morphologic			
			configuration of the Ebro			
			Delta causes the existence			
			of zones with different			
			behavior with respect to			
			coastal dynamics,			
			alternating beaches with			
			erosive character (river			
			mouth, Marques and Pal			
			beaches and Trabucador			
			Spit) with beaches whose			
			tendency is accretion			
			(Fangar Spit, Alfacs Spit			
			and Eucalyptuses Beach).			
			Other factor that affect			
			their erosion is the river			
			damming. The Ebro Delta			
			presents exceptional			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			values of natural heritage.			
			Represents the second			
			more important aquatic			
			habitat of the western			
			Mediterranean, after the			
			French Camarga. Its low			
			altitude causes a high			
			vulnerability to erosion			
			putting in danger all these			
			values of difficult			
			economic assessment.			
Spain	Autonomous	Mar Menor ¹²⁰	The Mar Menor is a	Coastal characteristics:	Socio-economic	Engineering techniques:
	com. of		hypersaline coastal lagoon	• Study area: 25	activities:	Nourishment and groynes
	Murcia,		of 135 Km2 in surface	km ; Sedimentary cell:	Tourism and urban	Engineering techniques:
	San Pedro del		area, located at the SE of	50 km	In relation to human	Nourishment and groynes
	Pinatar – San		the Iberian Peninsula,	• Type of coast:	occupation, the Mar	Policy options:
	Javier-		between the parallels 37°	beaches (with sand)	Menor has experienced	Hold the line, limited intervention

¹²⁰ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
	Cartagena		38' and 37° 50' North	8	varying changes over	
			latitude and the meridians			There is no a real, active policy concerning
			0° 43' and 0° 57' West	• Range of waves	being a practically	coastal erosion. Regarding the few
			longitude. The mean depth	: mean Hsig =< 1m	uninhabited place, with	
			is 3 to 4 m, and the		-	nourishment and construction of groins),
			maximum depth is over 6		0	the main policy option has been to "Hold
			m. Such characteristics			the Line", as promoted by public
			made the Mare Menor one		shores, there is now a	administration, commonly on a national
			of the bigger coastal			level. It is important to point out that most
			lagoons from Europe and		above all in the months	of the nourishment performed on the
			the Mediterranean. A		of summer.	continental shore of the Mar Menor is
			sandy bar, called La		The human activities	aimed at the creation of new beaches in a
			Manga with 22 km of		developed close to the	place where there was originally no
			long, acts as a barrier		lagoon include: salt	morphology of sandy beaches. The main
			between the lagoon and		mining, agriculture,	goal of these interventions was to try to
			the Mediterranean Sea. It		fishery, industry,	attract more tourism.
			is crossed by five, more or		tourism and recreation,	
			less functional, channels		urbanisation and	
			or "golas". (Perez-Ruzafa,		military uses. This	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			1996).		conjunction of many	
			Erosion factors include		interests and uses made	
			mainly natural driving		the Mar Menor the	
			forces - winds, storms,		target of all type of	
			waves and a rise in sea		aggressions during its	
			level. La Manga was		recent history (land	
			created by marine currents		reclamation, the	
			and the effect of the wind		opening or deepening	
			and waves. The wind is		and extending channels,	
			the main factor		mining, urban and	
			influencing sediment		agricultural wastes,	
			transport in this area.		urban development,	
			Prevailing winds in the		building sporting	
			area are from the East		harbours, artificial	
			component. The		beaches creation, etc)	
			modification of the sea		(Pérez-Ruzafa, 1996).	
			level will lead to			
			important consequences			
			for low coasts such as the			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			Mar Menor, in which the			
			backward movement of			
			the coast is ranked at			
			around a meter per			
			centimetre of rise in sea	L		
			level. (Mas, 1994).			
			The Mar Menor lagoon is			
			an accumulation coast			
			dominated by	r		
			sedimentation rather than	L		
			erosion, although in some	,		
			specific places erosive	,		
			phenomena are quite	,		
			evident, emphasizing the	,		
			full exterior of La Manga.			
			The main erosion causes			
			are land urbanization on	L		
			dune system, updrift			
			construction of the San			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			Pedro del Pinatar Port			
			(1954) and enlargement of			
			the El Estacio channel for			
			the construction of a	L		
			harbour.			
Spain	Catalonia	Sitges ¹²¹	The town of Sitges is	Coastal characteristics:	Socio-economic	Engineering techniques:
	autonomous		located on the	• Study area: 16	activities:	Detached breakwaters, T-shaped
	community,		Mediterranean coast,	km.	Tourism, industry,	breakwaters, groynes, artificial islands,
	Barcelona		40km south of Barcelona.	• Type of coast:	marinas.	beach nourishment
	province,		It has a coastal area of	beaches (fine to	Sitges economy depend	Policy options:
	Garraf		18.840km long, which is	medium sand, shingle)	enormously on tourism	Hold the line
			made of cliffs and sandy	and soft rock coast	(basically the summer	To face erosion, the policy adopted by the
			beaches. There are 18	• Tidal regime:	tourism), so the loss of	government is hold the line. The measures
			pocket beaches in the	microtidal	beach is the main worry	adopted are both hard measures, such as
			municipality's coastal	• Range of waves:	for all the stakeholders	groynes, detached breakwaters, T-shaped
			area, 10 of which are in	dominant SEA <1 m	involved. Quarries and	breakwaters, artificial islands and seawalls,

¹²¹ Source: Eurosion <u>http://www.eurosion.org/shoreline/index.html</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			front of the urban area.	high, H max about 4	recreational ports are	and soft measures (beach renourishment).
			Beach and bottom	m.	other economic sectors	The numerous groynes retain the sediments
			sediments are sands of	,	of the municipality.	that circulate in a NE-SW longshore drift,
			siliciclasthic origin, of	, ,		avoiding the feeding of the southwest
			light gold colour and fine			beaches, which are the most affected by
			to medium grain size. The			erosion, and worsening the problem of
			driving forces that cause			erosion. The marina docks northly, deviate
			erosion in the coast are			to the offshore a huge part of the sediment
			mainly the lack of	,		load carried by longshore drift.
			sediment transport by the			
			southwestwards longshore			
			drift, and the east storms,			
			combined with the effect			
			of numerous groins and			
			breakwaters, and marina			
			docks, which retain			
			sediments in their leeside.			
			The major impact of the			
			erosion is the loss of	·		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			beach surface.			
SPAIN	Catalonia	Barcelona ¹²²	The study area in the case	coast, grass and	Ancient history and	pollution control, resource management,
			of Barcelona is a coastal	rangeland;	great cultural identity	institutional strengthening, infrastructure
			area in between the rivers	landscape/ports	and an economy	development, biodiversity conservation,
			Besos and Llobregat. The		historically linked to	education/awareness
			coast front of the		maritime activities, and	
			Metropolitan area is 40,8		with an increased	
			km long, 12 km of which		dependence of the	
			in the city alone. The type		economy on the use of	、 、
			of coast varies in relation		the coasts.	
			to the geological nature of			
			the region. There are		The coast front of the	
			numerous protected areas		Metropolitan area in the	
			and they cover almost all		case of Barcelona has	
			the coast.		3,8 million inhabitants.	
			urban expansion, water		The commercial port of	
			pollution, air pollution,		Barcelona is in	
			soil pollution, coastal		economic terms the	

¹²² Source: Priority Action Plan <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=12&shortID=65#65</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			soil pollution, coastal		principal Spanish port	
			erosion,		although it does not	
			tourism/recreation,		house any refineries	
			transport congestion,		and heavy industries.	
			endangered species,		The principal sources of	
			habitat loss,		pollution of the coast	
			Environmental risks		are urban and industrial.	
			(volcanic, geological,		The Llobregat river has	
			hydro-geological) and		no depurator at its	
			demand for protection of		mouth and the water of	
			environmental sites,		the Besos river are	
			Abandonment and		purified in the city's	
			deterioration of the natural		waste treatment plant.	
			and cultural heritage.			
SPAIN	Tarragona	Montroig ¹²³	erosion due to up-drift	Morphodynamic		
			barriers.	"problems" in free-		
				transport beaches are		

¹²³ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
-					Social –Economic	Policy & Management
					Facts	
-				normally associated to		
				larger-scale modifications		
				of the transport pattern.		
				the resulting		
				morphodynamic		
				evolution depends on the		
				selected timescale and		
				cross- plus long- shore		
				transport processes		
Spain	Catalonia	Cape Tortosa ¹²⁴	the area has suffered most			
			erosion in recent years			
			because it is the area of			
			the delta that absorbs most			
			wave energy (Serra,			
			1997). It is estimated that			
			the linear regression has			
			been close to 1,600m in			
			40 years (figure 13),			

¹²⁴ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			which corresponds to a	ı		
			velocity of 39m/yr.			
Spain	Valencia	Castellon ¹²⁵	have faced extensive	Southward littoral drift	;	Local management actions carried out
			eroding problems caused	along this coast is		during the last thirty years, such as beach
			by the existence of the	interrupted by the Port of		fill and dike construction, managed to
			port of Castellón and this	Castellon and the Serrallo		prevent erosion and even to double beach
			has increased since 1961,	industrial estate.		area. However, seaside quality has
			when the last extension of			considerably decreased and the nearby
			its sheltering harbour wall			Mijares delta is now experiencing
			was carried out.			noteworthy erosion (Liquete et al., 2004).
			The result of preventive			
			policy (see column)has			
			been dramatic coastal			
			erosion on Almassora			
			beaches.			
Spain	Mallorca	Alcudia Bay ¹²⁶	A classical sandy beach	The type of erosion	Human activities can be	The first human construction that has

 ¹²⁵ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i
 ¹²⁶ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
	Island		and dune that show	s observed at Alcudia Bay	divided in two main	influenced the studied area was the dikes of
			erosion and accretion a	nt is a gradual sediment loss	actions: Housing near	the "S'Oberta" channel (end of the XIXth
			different places. Th	e due to the S-N longshore	or on the foredune and	century) at the northernmost sector of the
			distribution of the erosio	n transport. During storm	dune field (anthropic	studied zone. Those dikes provoke a rupture
			and accretion sites i	s events acute erosion is	pressure), and sea	of the longshore sediment transport that has
			mainly controlled b	y observed.	activities. Housing on	induced a division of the northern
			human construction	s Probably, the subsidence	the foredune implies	sedimentary cell in two independent
			(dikes and harbor	r) related to the sediment	that the de dune system	sedimentary cells
			together with th	e compaction must be	is no longer part of the	
			longshore transport an	d greater than the tectonic	coastal zone. This	
			storms. It can b	e one, but data on this	makes the coastal zone	
			considered that there is	a aspect are not available.	(dune/beach and	
			continuous or gradua	al above the sediment of the	foreshore) more	
			erosion process related t	o area has mainly a	vulnerable for acute	
			the longshore transpor	t, bioclastic origin (more	erosion. On the other	
			and intermittent erosio	n than 80%). The longshore	hand, the sea activities,	
			related to storm episodes.	currents do not supply	especially in summer,	
			These two processes caus	e additional sediment to the	cause a retreat of the	
			redistribution of th	e Alcudia Bay zone. A	Posidonia Oceanica	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			sediment.	unique sediment supply	prairie is one of the	
			In some places of the	that is independent from	most important	
			studied zone the retreat	the sea are sediments	organisms of the beach	
			has resulted in the	transported by the small	system.	
			destruction of the	creeks, which can be		
			foredune, and at present	considered almost		
			waves are eroding the	negligible, and those		
			sand dune field. On the	sediments coming from		
			other hand, some places	the erosion of the sea		
			have undergone a	cliffs located at the		
			sediment increase and the	extremes of the Alcudia		
			foredune is preserved.	Bay. The sedimentary		
			Causes of erosion are	cell of the Alcudia bay is		
			mainly related to the	nourished mainly by the		
			human activities in	biological activity that		
			combination with	takes place in the sea.		
			restricted sediment	The biological activity is		
			supply. Moreover, it must	strongly related to the		
			be noticed that the fact	Posidonia Oceanica.		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			that the zone is located	Almost all the organisms		
			within a subsiding area	that form the sediment of		
			(Muro - Sa Pobla Basin)	the beaches live around		
			more intense erosion	or depend on that plant.		
			process associated with	So, when we reduce the		
			the relative sea level rise	Posidonia Oceanica		
			cannot be discarded.	prairies we kill the		
			Nevertheless, taking into	sediment factory of the		
			account the seismic	Mallorca beaches. As		
			activity of the area, we	there is not any external		
			could not expect velocities	supply when the		
			higher than 0.1 mm/year	Posidonia Oceanica		
			of tectonic subsidence.	prairies are destroyed we		
				are inducing a beach		
				retreat.		
				Another important aspect		
				related to the Posidonia		
				Oceanica is that during		
				storms, dead parts are		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
				deposited on the beach.		
				Those fragments form a		
				little wall reducing the		
				wave energy, diminishing		
				the effects of the storms		
				on the beach system.		
Tunisia		northern coast ¹²⁷	the beaches are most often			
			less sensitive to erosion			
			problems and have,			
			sometimes a rather excess			
			sedimentary budget in the			
			case of the beaches			
			occupying the oueds			
			mouths			
Tunisia	25 km from	Zouaraa ¹²⁸	Serious erosion of the	A linear beach,	A dam plays an	
	the established		beach near the river mouth	approximately 17 km	important role in the	

¹²⁷ Source: REPUBLIC OF TUNISIA, MINISTRY OF ENVIRONMENT, AND LAND PLANNING (2001).

¹²⁸ Source: REPUBLIC OF TUNISIA, MINISTRY OF ENVIRONMENT, AND LAND PLANNING (2001).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
	resort of		by up to two metres had	long, behind which is an	strategic development	
	Tabarka near		been experienced within	extensive dune system	of the area through the	
	the Tunisian		two years of the dam	that has been largely	provision of irrigation	
	border with		initiation.	afforested.	and potable water.	
	Algeria					
Tunisia		Gulf of Tunis ¹²⁹	the coasts configuration,	The coast of the Gulf of	it hosts the most	The coast of the Gulf of Tunis, shows many
			and the importance of the	Tunis, shows many forms	important urban and	forms of weakness caused by the
			lower level areas make	of weakness caused by	industrial concentration	conjunction of numerous anthropogenic
			different	natural factors	of the country	interventions throughout a relatively long
			sectors of this zone very			history.
			vulnerable to ASLR			
Tunisia	north-eastern	Cape of Bon ¹³⁰	coast, river basin and the	1.1. The Dar Chichou	Human needs related to	The national policy is the coastal protection
	part of Tunisia		adjacent coastal area,	forests: 6,041 hectares.	these natural systems	policy implemented by the APAL.
			estuary, coastal forest,	This is a group of forests	(lagoon, forests,	Project's aims: overall policy, preparatory
			swamps/floodplains,	which fix expanses of	archipelago, oueds and	activities, development control, resource
			rocky coast, grass and	dune, which were first	estuary) are quite	management, institutional strengthening,

¹²⁹ Source: REPUBLIC OF TUNISIA, MINISTRY OF ENVIRONMENT, AND LAND PLANNING (2001).
 ¹³⁰ Source: Priority Action Plan <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=20&shortID=91&start=start</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			rangeland, island, lagoon,	undertaken under	varied. In the case of	infrastructure development, biodiversity
			peninsula; dunes and dune	measures to prevent crop	the lagoons, they are	conservation, capacity building,
			massifs; lagoons, barriers	fields from being	used for discharging	education/awareness, monitoring,
			This project covered:	swallowed up by the	industrial and urban	networking
			1- The Dar Chichou	sand. In the upstream	waste; for the forests,	
			forests and the Oued	stretch they include a	apart from the illegal	
			Labid estuary: 11,991	complex of dunes made	and improper hunting	
			hectares	up of mobile, fixed and	which goes on, the	
			2- The western Cap Bon	fossil dunes.	supply of wood and its	
			lagoons: 450 hectares 3-	1.2. Oued Labid estuary:	by-products is used,	
			El Haouaria mountain and	the coastal site linking the	and additional land	
			the Zembra archipelago:	Port aux Princes site to	created to serve the	
			1,362 hectares	the Oued Labid, covering	needs of growing	
			The five sites studied	5,950 hectares. The Oued	urbanisation; for their	
			contain a wealth of	Labid is the area's main	part, the oueds,	
			interesting biodiversity	watercourse, transporting	estuaries and the	
			(around 35% of the	around 7 million m3/year.	archipelago face threats	
			endangered species	Its estuary communicates	more related to human	
			on the Tunisian coasts).	with the sea on an almost	pressure and farming	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			The following points were	constant basis.	practices (creation of	
			noted:	2. The eastern Cap Bon	areas for intensive	
			- Degradation of	lagoons: on the eastern	irrigated crops, over-	
			biodiversity in the	side of Cap Bon.	grazing), unregulated	
			wetlands and coastal	Comprises a string of	hunting, tourist	
			areas. The main cause of	lagoons stretching over	projects, and	
			degradation is the growing	50 km, with an average	particularly the dam	
			pressure of economic	length of 200m. They are	built on the Oued	
			activity on the coastline.	separated from the sea by	Labid, which will	
			- The presence of some	two low-lying dune	obviously change the	
			biodiversity of	systems. They	parametres of the	
			international importance,	communicate with the	surroundings.	
			requiring particular	sea, but with the	We have also noted	
			protection and a	exception of Korba	other environmental	
			management method for	lagoon they dry up almost	dysfunctions in the Dar	
			specific sites.	completely during the dry	Chichou forest, linked	
			- A lack of consultation	season.	to intensive irrigated	
			between the population	3.1. El Haouaria	farming practices, use	
			and the users on the one	mountain: the site covers	of chemical products,	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			hand, and local	970 hectares, embracing	and over-exploitation of	
			administrations and the	virtually the entire tip of	the aquifer.	
			associations on the other.	Cap Bon and including		
				the entire area of the		
				coastal djebel.		
				3.2. Zembra archipelago:		
				made up of two islands in		
				the North-Eastern part of		
				the Gulf of Tunis, the		
				natural extension of Cap		
				Bon. The largest of the		
				two, Zembra, lies 115 km		
				off the peninsula and is		
				flanked by two rocks- the		
				Entorche to the North and		
				the Cathedrale to the		
				West.		

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
Tunisia		Gulf of	the coastal segment is	It is understood that, due	Over the last two	depletion of water resources often
		Hammamet ^{131,132}	anthropic. In this way, the	to its geographical	decades, a major shift	accompanied by overexploitation of
			sea sector erosion	location and its climatic	of population growth,	groundwater resources and consequent salt
			problems are raised in the	characteristics, Tunisia	urbanization,	water intrusion in the immediate coastal
			tourist sector of	will certainly be very	industrialization and	zone, and pollution from unchecked
			Hammamet where some	sensitive to the direct	tourism towards the	economic development and insufficient
			hotels have even lost an	adverse effect of Climate	coastal zone could be	waste and waste water management. These
			important part of their	Change	observed. The emerging	development conflict with the parallel
			sandy beaches.		problems involve a	development of tourism, which depends on
			faced with the threats		combination of rapid	the same resource basis but also on a clean
			caused by the accelerated		land use change,	and attractive environment, inland and
			sea level rise (ASLR),		population growth	coastal areas. Tourism, which is among the
			Tunisia is at risk to be		driven to a migration	main strategic lines of the development of
			more exposed and thus		from inland agricultural	Tunisia, could suffer as a consequence of
			more vulnerable		areas. The aesthetics	ASLR.
			The Tunisian coast line		and extent of the	

¹³¹ Source: REPUBLIC OF TUNISIA, MINISTRY OF ENVIRONMENT, AND LAND PLANNING (2001).

¹³² Source: SMART: Sustainable Management of Scarce Resources in the Coastal Zone Project Work Plan http://www.ess.co.at/SMART/b5.html

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			concentrates 2/3 of the		beaches could be highly	
			total population, more		affected by ASLR. In	
			than 70% of the economic		addition, the	
			activities, 90% of the		infrastructures, notably	
			tourists accommodation		those very close to the	
			total capacity, and a great		coast, will be	
			part of the irrigated		threatened ¹³³ .	
			agriculture.			
Tunisia	Sfax South	Sfax ¹³⁴	coast, river basin and the	- Water shortage: rainfall	production of salt at	Project's aims:overall policy, preparatory
	south-eastern		adjacent coastal area,	has been decreasing for	saltworks	activities, pollution control, development
	region		wetland,	several years (less than	Disorderly urbanisation	control, resource management,
			swamps/floodplains, grass	200 mm/year), whilst the	and illegal land use,	infrastructure development, biodiversity
			and rangeland, island,	population is growing,	- Pollution of	conservation, urgent measures
			sandy beach; Water	largely due to people	continental and	development, planning, monitoring,
			Desalinisation Plan	abandoning rural areas.	seawater (from land-	networking
			- Coastal erosion: Chaffar	The ground water	based sources),	

¹³³ Source: SMART: Sustainable Management of Scarce Resources in the Coastal Zone Project Work Plan http://www.ess.co.at/SMART/b5.html

¹³⁴ Source: Priority Action Plan <u>http://www.pap-medclearinghouse.org/eng/page001b.asp?zemljaID=20&shortID=91&start=start</u>

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			beach is undergoing	aquifers have become	- Air pollution from the	
			intensive erosion, visible	salinated. Drinking water	SIAPE plant (Industrial	
			year on year,	is tapped from the	Phosphoric Acid and	
			Threatened species and	aquifers in the north of	Fertiliser Company)	
			loss of habitats: land-	the country,	and other plants in the	
			based sources of pollution	- Sediment movement:	adjoining industrial	
			have contributed to the	the oued Chaffar and the	zone,	
			loss of the Posidonia	other watercourses	- Soil pollution caused	
			meadows, and some	transport various	by the storing of	
			marine species have	sediments into their	phospho-gypsum, the	
			become endangered.	estuaries,	public rubbish dump,	
			The project site is part of	- The "red tide"	and the former	
			the Sfax region in	phenomenon (algal	vegetable water	
			Southern Tunisia. This	blooms at sea) which	disposal points,	
			area is seen as the	persists from year to year,	- Population growth:	
			gateway to the desert, and		2.1%/year (from 1984 -	
			the crossroads of routes		1994),	
			between the Northern and			
			Southern coasts. The relief		Tourism/leisure: no	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social – Economic	Policy & Management
					Facts	
			of the area is relatively		tourism whatsoever in	
			flat and monotonous, with		the area under study.	
			a semi-arid to arid		The only tourism is in	
			climate, and with rainfall		transit towards the	
			levels barely exceeding		South and vice versa.	
			200 mm per year. The		Recreational	
			prevailing wind is from		possibilities of minor	
			the North East.		import: bathing is	
			The area is shaped like a		officially banned on	
			mini gulf, stretching from		certain beaches.	
			the new fishing port to		Recreational areas have	
			Gargour village and then		been forgotten in many	
			the village of Chaffar,		cases; they are currently	
			over almost 20 km. The		starting to be	
			sea is calm with quite a		rediscovered,	
			pronounced tidal range,		- Excessive fishing: the	
			which can reach 1.8 m.		marine fishing fleet	
					makes up more than	
					40% of the national	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social – Economic Policy & Management	
					Facts	
					fleet,	
					- Traffic congestion	
					both on land and at sea:	
					traffic in the town has	
					eased somewhat since	
					2002, but when the	
					study was conducted	
					land traffic had reached	
					saturation point. Sea	
					traffic is also congested	
					by the passage of	
					fishing vessels	
					(trawlers, etc.), cargo	
					ships (phosphates,	
					sulphur, salt, etc.), and	
					oil tankers,	
					- Intensive oil	
					exploitation: oil and	
					gas, and the passage of	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization
			Description	Characterization	
					Social – Economic Policy & Management
					Facts
					several pipelines both
					on land and at sea,
					Over recent decades,
					Sfax has undergone
					undeniable socio-
					economic development,
					allowing it to retain its
					position as second town
					after the capital.
					However, in spite of
					having 400,000
					inhabitants in 1994, its
					population growth
					(2.1%/year between
					1984 and 1994) is
					below the average for
					the country as a whole
					(2.3%), and also the
					national urban average

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization
			Description	Characterization	
					Social – Economic Policy & Management
					Facts
					(3.8%). This bears
					witness to the limited
					attraction which the
					town exercises over the
					out-lying areas in the
					immediate vicinity and
					further afield. The
					relatively low rate of
					population growth is
					compensated for by an
					employment rate of
					32% in 1989 (compared
					with 31.4% for Tunisia
					as a whole),
					corresponding to an
					unemployment rate of
					11.3% compared with
					15.3% at national level.
					Sfax is also a leading

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charact	terization
			Description	Characterization		
					Social – Economic	Policy & Management
					Facts	
					producer of oil, poultry,	
					fish and dairy produce,	
					and many other	
					products such as	
					almonds and other dried	
					fruits. It goes without	
					saying that, as far as	
					industry is concerned,	
					Sfax often acts as an	
					important magnet,	
					attracting large numbers	
					of investors as well as	
					consumers and	
					middlemen, all of	
					whom contribute to its	
					enhanced economic	
					development.	

Country	Area	rea Name	Coast and Erosion	Physical	Anthropogenic Charac	cterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
Tunisia		From El	Beach erosion		tourism	
		Kantaoui port, to				
		Sousse ¹³⁵ ,				
Turkey		Bay of Izmir ¹³⁶	The Bay of Izmir is one of	The water depth in the	The existing population	
			the largest bays in the	bay ranges from 10 m in	of approximately 2	
			Aegean coast of Turkey,	the	million will,	
			and extends about 24 km	Inner to 60 meters in the	according to some	
			in east-west direction,	Outer Bay On the south	estimates, double in the	
			with an average width of	shores of the Bay , much	next 30 years. Izmir,	
			about 5 km.	of the	together with a number	
			it consis of three sections	land is covered by high	of	
			according to the	hills with steep slopes	"satellite" cities in its	
			topography and	and there is a narrow	vicinity, is a major	
			hydrology: the	alluvial plain along the	industrial area. In	
			Inner Bay, the Middle	shoreline. In contrast to	addition to large	

¹³⁵ Source: REPUBLIC OF TUNISIA, MINISTRY OF ENVIRONMENT, AND LAND PLANNING (2001).

¹³⁶Source: Priority Actions Programme, Regional Activity Centre(1996).

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	eterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			Bay, and the Outer Bay.	the south shore, the north	industrial	
			The Inner and Middle	shore is characterized by	establishments, a large	
			Bays do not have	low, flat river deltas.	number of small- and	
			appropriate	However, along the	medium-scale	
			capacities for water	eastern side of the north	enterprises have	
			exchange and	shore, there is an area	flourished in and	
			autopurification	which is covered by fairly	around the city.	
				high	Environmental control	
				hills. Similar to the south	over these	
				shore, the north shoreline	establishments does not	
				is also characterized by a	seem to be very	
				narrow alluvial plain.	efficient. Their residues	
				At the east end of the	are discharged	
				bay, there is a valley	untreated into numerous	
				known as the Bornova	streams running into the	
				plain. This alluvial valley	Inner Bay of Izmir,	
				is about 5 km wide, and	adding to its already	
				slopes gradually to	high level of pollution.	
				elevations about 80-90	The continuing	

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Charac	terization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
				meters at its eastern end.	industrialization of the	
				This	area has been the	
				area is used both for	response to an ever-	
				agricultural and industrial	increasing demand for	
				purposes.	new jobs. Some of the	
					industries are located in	
					watershed areas which	
					are of vital importance	
					for the water supply of	
					the city.	
Turkey	Western	Edremit Bay ¹³⁷	There exists a significant	Madra River, located	Urban development,	The dam located on the Madra River,
	Turkey		decrease in the amount of	between Altinova and	reflecting high	erosion-control works in the Kozak region,
			sediment at the coast.	Dikili, is the main	population growth,	sand taken from the Madra River bed
			In the last decade, the	sediment source of the	Urban waste waters are	The system of resources management in the
			Altinova coastline has	coastline.	one	area is split between four administrative and
			suffered from intense	Bathymetric	of the major sources of	decision

¹³⁷ Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
-			chronic and permanent	measurements in	pollution of the bay	making levels, namely, the central
			erosion, and thus, the	Altinova and the vicinity	Wastes discharged by	government, the Governorate of Izmir, the
			shoreline has retreated	of the Madra River mouth	the industries situated	metropolitan, and
			approximately 600 m	reveal the existence of a	around the bay	the district level. The existing mechanisms
			during the last two	deep pit, which prevents	port facilities in the	of decision making require much better
			decades and 18-20 m in	the feedback of sand	eastern part of the bay,	coordination
			the last year Loss of	removed from the region	and	among these levels. There is no single
			cultivated land to	through storms and	navigating vessels,	authority entrusted with the environmental
			residential purposes on the	accelerates the erosion	present a constant threat	management of
			one hand, and increasing	rate at the coast, because	to the bay ecosystem.	the entire area.
			demands for agricultural	the sand input through the		
			produce on the other, have	Madra River has		
			reduced the nature	decreased dramatically.		
			conservation	This deep pit is a		
			areas, decreased the level	dominant morphologic		
			of flood protection, and	factor causing coastal		
			increased soil erosion.	erosion		

Country Area		Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
Turkey		Seyhan, Ceyhan	The Seyhan, Ceyhan and			
		and Goksu	Goksu deltas are where			
		deltas ¹³⁸	the most active shoreline			
			changes have been			
			occurring in the			
			northeastern			
			Mediterranean.			
		Seyhan	on the mouth of the		dam	
			Seyhan River,			
			progradation summed up			
			to about 98,437,625 m ²			
			with a rate of 28,304 m 2			
			/yr until 1954.			
			Construction of a dam on			
			the river in 1954 greatly			
			reduced sedimentation in			
			the delta and erosion			

¹³⁸ Source: Source: Y.N. Krestenitis & I.S. Androulidakis (2006).i

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			started at a rate of 24,696	6		
			m ² /yr. As a result, from	L		
			1954 to 1995, an area of			
			about 1,012,536 m 2 has			
			been lost due to coastal			
			erosion, and the delta	L		
			became retrogradational.			
		Ceyhan	On the mouth of the	,		
			Ceyhan River, however,			
			the total amount of			
			progradation from 1947 to			
			1995 is about 3,097,745 m	L		
			² . About 90 percent of this			
			progradation occurred	l		
			with a rate of 74,977 m 2	2		
			/yr before the construction	L		
			of a dam on the river in	L		
			1984. The rate of			
			progradation after 1984			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Characterization	
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			reduced to about 29,418 m			
			² /yr, and only 323,597 m	l.		
			² prograding occurred			
			from 1984 to 1995. To the			
			northeast, an area of			
			835,779 m 2 was eroded			
			by the sea due to no			
			sediment influx on the			
			abandoned Ceyhan River			
			channel in Yumurtalik			
			Bay between 1948 and			
			1995. The total amount of	,		
			progradation, from 1956			
			to 1995,			
		Goksu	on the mouth of the Goksu			
			River is 398,445 m 2 . To			
			the southwest, due to			
			coastal erosion at a rate of	5		
			4,548 m ² /yr from 1951 to			

Country	Area	Name	Coast and Erosion	Physical	Anthropogenic Char	acterization
			Description	Characterization		
					Social –Economic	Policy & Management
					Facts	
			1995, the lighthouse a	t		
			Cape Incekum is now	7		
			lying under the sea. The	2		
			total amount o	f		
			retrogradation here is	5		
			about 200,125 m ²			

Executive Summary. The Mediteranean Sea Coastal Zone State of Erosion, Hazards and Risk assessment and Problems to be Solved

1. Status of Climate Change Induced Sea Level Rise in the Mediterranean

Sea level rise due to greenhouse effect forecasted for the Mediterranean has been confirmed from recent studies conducted within the ESEAS-RI EC project as well as by other groups.

The present rate assessed is about 0.5cm/year during the last 14 years. To this decadal fluctuations of between -1.5 and +1.5cm/year have been measured, the cumulative effect being of about -1.5cm/year in the Ionian Sea region, about 2cm/year in the Eastern Mediterranean region surrounding Crete and only about 1cm/year at the coasts of Egypt, and Israel. The decadal fluctuations appear to be related to the Southern Atlantic Oscillation (El Nino – La Nina) via the monsoons penetration in the Eastern Mediterranean. The long term sea level rise due to greenhouse effect assuming the business as usual (BAU) scenario are: for 2025: +3cm to +14cm; for 2050: +5cm to +35cm and for 2100: +9cm to +88cm.

2. Status of Coastal Erosion in the Mediterranean due to Anthropogenic Impact

Anthropogenic impact on coastal erosion is an important factor which has imposed the present state of a significant number of beaches on the coasts of the Mediterranean. This is expressed mainly by construction of coastal structures, blocking most of the longshore sand impact occurred at the Nile delta coast, following the cessation of sand arrival to the sea from the Nile river after the construction of the Aswan dams. Additional erosion impact has been encountered due to local sand mining (e.g. Israeli and Lebanese coasts) or sand dredging. The last erosion contribution is due to the lack of beaches maintenance over most of Mediterranean coasts, which should have been done primarily via sand by-passing or artificial sand nourishment. Future development of coastal structures is estimated to further increase anthropogenic induced coastal erosion, unless active routine actions including especially sand by-passing and artificial san nourishment will be done.

3. Forecasts of Coastal Erosion due to Climate Change and Anthropogenic Causes.

The forecasted sea level rise and blocking of longshore sand transport are estimated to further increase and accelerate coastal beaches and cliffs erosion, impacting local residents, tourism, recreation and business. Given the fact that more than 70% of the world population lives now close to the coasts, and given the fact that about the same rate of European population uses the Mediterranean coasts for recreation, this impact will reduce the availability and quality of Mediterranean beaches for recreation, tourism and residence. Consequently active actions need to be taken to reduce the erosion as soon as possible.

4. Forecasted Impact of Coastal Erosion due to Tsunami Events in the Mediterranean

The Indian Ocean tsunami event in December 2004 accelerated the awareness to tsunami potential encounter and damage, in particular in the Mediterranean. Last November, following UN assembly decision, the 1st session of the Intergovernmental Coordination Group for the North-Eastern Atlantic, the Mediterranean and connected seas Tsunami early Warning System (ICG NEAMTWS) was held in Rome under the UNESCO umbrella. The meeting UN member states participants decided unanimously that the group will immediately start the development of the early warning system and implement it within two years, because of the relatively high risk for tsunami events, in particular in the Mediterranean. Among the various items which will be addressed, tsunami modelling of development, propagation, run-up and flooding have been also included. There is a clear potential impact of severe coastal erosion of coasts impacted by tsunamis, as well as the need for protective means such as submerged artificial reefs to reduce focusing and run-up in particularly sensitive coastal sectors. It is however estimated that these will be investigated within the ICG-NEAMTWS activity.

C. REVIEW ON THE AVAILABLE COASTAL EROSION MODELS IMPLEMENTED IN MEDITERRANEAN AND BLACK SEA

1. Introduction

The construction of marine structures in coastal environments introduces a variety of changes in the morphology of the sea bottom and the coast itself. In the Mediterranean coasts an increasing number of maritime works affect significantly the morphology of coastline and coastal seabed. Additionally with the anthropogenic causes, the nature causes of coastal erosion produces periodical changes in sandy coasts, dunes, deltas etc. creating environmental and social problems, in all the Mediterranean countries. In the last decades, 1-D, 2-D, 3-D numerical simulations is a common aspect in forecasting and monitoring these alterations in order to provide to the designers a better view about the problems that could revealed after a construction. Additionally, models can play a fundamental role in the decision phase of the appropriate measurement method that it should be used in its erosion case. For example, planning nourishment in the context of a multi-years management strategy requires more significant prediction skills than available in the past and an awareness of dealing with uncertainty.

The adoption of simulation models represents a technique to answer "what-if" type of questions (Capobianco et al., 2002). The fundamental role of models is that of reducing as much as possible "surprises". Surprises that might be expressed in terms of failures and in terms of costs. The need that is clearly connected to such exigencies is that of handling and properly communicating uncertainties, as well as the need to properly assess the economic and environmental implications of modelling failures.

Some of the most common models are listed below followed with specific implementations in the Mediterranean region.

2. Delft3D Model

2.1 Model description

The integrated modelling system Delft3D was designed to deal with many different physical, chemical and biological processes in estuaries and coastal seas. The system can be used for the following areas of application. The system can be used for the following areas of application:

- hydrodynamics,
- waves,
- sediment transport in the water column as well as at the bottom,
- morphological evolution of the bottom,
- water quality,
- particle tracking for water quality and
- ecology.

All processes can be simulated in a two- as well as three-dimensional way, which means that vertical differences within the water column are either resolved (3d) or not (2D). Beyond simulation of the above mentioned processes, the integrated modelling system Delft3D does also provide methods for grid and bathymetry generation, graphic display, data analysis as well as data extraction. Some components are already integrated with GIS.

2.2 Model implementations

Israel Coast

In 2000, following a cooperative agreement between Israel and The Netherlands, a joint has been carried out for the sedimentological impact assessment of artificial islands on the Israeli coast. The study combined extensive field meteo-marine data gathering and analyses (waves, sea-level, currents, wind, sediments, geo-morphology, fill material sources survey, etc.) by the IOLR, sedimentological modelling (2-D Delft3D). Of varius island shapes, two were selected as the most appropriate: a tear-drop shape for residential, industrial or environment uses and a rectangular shore parallel shape for an offshore airport. The modelling included investigation of relatively long term affects(30 years and extreme storm conditions impacts on the central coast of Israel from Palmachim to Bet Yanai.

Egypt Coast

Numerical simulations were performed using DELFT3D to investigate erosion and sedimentation problems at Rosetta promontory and to propose alternative countermeasures to mitigate the coastline erosion at the southwest coastline of Rosetta (Ahmed et al 2004). The other objective of this study was to maintain the eastern and western embankments that were con-structed in 1991 around the Rosetta waterway outlet at a foundation level of -6m. The grid size of the modeled area was 25 x 50 m2 at the nearshore region of the southwestern coatsline of the Rosetta promontory while it was 25 x 40 m2 at the Rosetta waterway. Input data for the four modules, wave, current, sediment and bottom modules were prescribed and the model was executed to predict the bottom evolution after one year starting from September 2001. Figure 1 shows the 2DH morphological evolution for groins at left panel and detached breakwaters at the right panel.

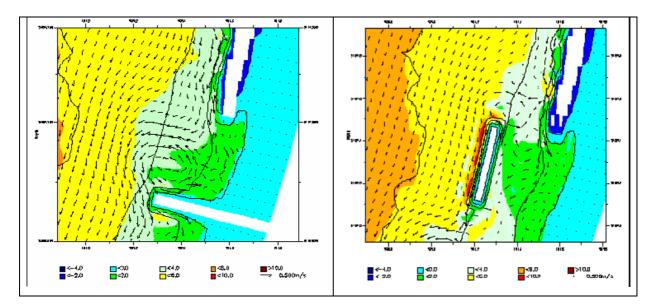


Figure 1. Prediction of the morphological evolution for groins (left panel) and detached breakwaters (right panel) immediately southwest of the western embankment (Ahmed, 2004)

3. Generalized Model for simulating shoreline Change (Genesis)

3.1 Model description

In its original version, the GENESIS shoreline-response model (Hanson 1989) allows calculation of shoreline response for a wide variety of coastal features and engineering activities, under the assumption that wave-generated currents dominate the longshore sediment (typically sand or sand-sized particles) transport. These features and activities include protective measures such as groins, jetties, seawall, beach fills, bypassing operations, and linear or point sources and sinks of sediment. Coastal structures and beach fill can be introduced in almost arbitrary numbers, locations, and combinations. Other processes included are wave transmission through structures, sediment passing through or by groins and jetties, wave diffraction from multiple structures and headlands, and multiple wave trains (e.g. wind waves and swell from different directions). However, the original GENESIS model also has limitations, of which a significant one is the lack of capability to represent tombolos.

3.2 Model implementations

Black Sea

In 2004, a study that presented a methodology for quantifying impacts of dredging on shoreline change, was based at GENESIS model (Demir et al., 2004). A combination of both analytical and numerical modeling techniques was employed, and the method could be applied to any site for which appropriate input data are available. Direct and indirect impacts of the dredged pit on sediment transport were considered. The direct impact leads to a loss of sediment from the dry beach via infilling of the dredged pit. The secondary impact results from modification of the nearshore wave conditions via the modified bathymetry. The presence of the dredged pit may lead to changes in the location of wave breaking and to modification of the wave field through refraction and, to a lesser degree, diffraction. These changes lead to modified longshore sediment transport patterns that alter the shoreline planform. Note also that while dredging for beach nourishment generally does not result in a net loss of sand from the littoral system, dredging for construction aggregate does, and therefore is a more severe concern. The impact assessment methodology was applied to a site on the Turkish Black Sea coast near Istanbul, where marine aggregate is used to meet

construction demand, and where regulations regarding marine dredging are not well established.

Egypt Coast

In 1997, numerical modeling was utilized for the first time to estimate the shoreline changes during the planning of a private pleasure marina in the Gulf of Suez (Abul-Azm & Rakha, 1997). This study was made to compliment an environmental impact assessment study (EIA) requested by the Egyptian Environmental Affairs Agency (EEAA). The impact of the marina on the sediment budget was investigated using GENESIS program. One of the main reasons of the study was to confirm the choice of the marina location to ensure minimum erosion to the shoreline. In the model, the sediment transport calibration constants were determined using the results of the two surveys and based on the sediment transport rate. Two locations of the marina was tested against minimum erosion in the down drift side of the marina.

4. SBEACH model

4.1 Model description

SBEACH (Larson & Kraus, 1989), is a numerical simulation model for predicting beach, berm, and dune erosion due to storm waves and water levels. Assumed in application of the model is that beach profile change during a storm event is dominated by cross-shore processes, and longshore transport effects on profile change are negligible. Application of the model is presently limited to profiles with noncohesive sediments, with no exposed reefs or bedrock. The model does not account for variations in profile response due to localized longshore effects (e.g., in the vicinity of a groin) or interactions with tidal currents. SBEACH was developed and tested based on analysis of laboratory experiments conducted with prototype-scale wave heights and periods, together with physical considerations of profile evolution and coastal processes.

4.2 Model implementations

French coast

In 2002, Sabatier et al. investigated beach change from dune to the closure depth, along the Rhône delta shoreline (Mediterranean sea), in the microtidal environment of a dissipative-

barred beach. The survey was based on 38 profiles recovered during one year in order to describe the beach morphology in relation to wave, wind and sea level. A bi-variate analysis is used to find the relationships between the beach morphology (dune, berm and bars) and wave, wind and sea level characteristics. The results show that onshore-offshore bar movement is in relation with wave intensity, but not clearly correlated with the beach volume change. SBEACH, was used on the data. After several tests, the better results over-predicted the beach change during erosional conditions and did not simulate satisfying accretional events during fair-weather conditions. This numerical model was inappropriate for, at least, the investigated beaches change. One piece of explanation could be that the model was built for long wave conditions and not for short wave ones as encountered in the Mediterranean sea. In situ measurements and modelling results are presented in figure 2.

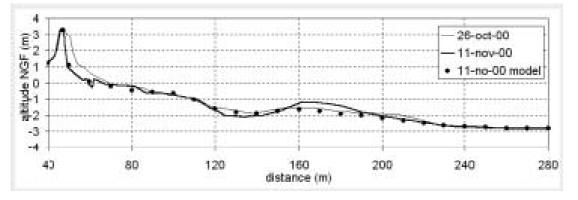


Figure 2. Modelling results and in-situ measurements featuring coastline changes (Sabatier et al. 2002)

5. UNIform BEach Sediment Transport (UNIBEST)

5.1 Model description

UNIBEST (UNIform Beach Sediment Transport) is a generic term for a software package that computes sediment transport along a uniform sandy coast and the coastal behaviour during human interference or storm. The software package UNIBEST (Delft Hydraulics 1994) consists of four separate modules; UNIBEST-LT, -CL, -TC, and -DE. UNIBEST-LT (littoral transport) can be used for the computation of net sand transport in longshore direction and its cross-shore distribution. UNIBEST-LT supplies the boundary conditions for UNIBEST-CL (coastline behaviour), which can be used to assess coastline changes due to human influence (e.g. breakwaters, groynes). UNIBEST-TC (transport cross-shore) can be used to assess coastal profile developments due to wave action. UNIBEST-DE can be used to compute dune erosion, and is quite similar with the TC module, but is especially intended to compute the effects of stormy episodes.

5.2 Model implementations

Egypt coast

The model was used in the study of the shore line changes at Sidi Krir touristic village by Mohamed & Saad of the Hydraulics Research Institute, Egypt .It is located at the Northern coast of Egypt along the Mediterranean sea. A seawall has been built along the village to protect it against the wave attack. An artificial lake has been constructed in the village for recreation purposes. A shore parallel breakwater was constructed in front of the village at about 390 m from the shore line to create a water basin behind it. It was planned that the water is delivered to the artificial lake in the village through an intake pipe, which takes the water from the water basin behind the breakwater. Three culverts were made in the body of the shore parallel breakwater for water refreshment in the basin. Figure 3 shows the general layout of the site. An outlet pipe has been constructed to take the water out from the lake to the sea. It was found that the seawall at about 450 m east of the breakwater has collapsed and the water basin behind the breakwater was filled up with sand. Consequently, the intake pipe, which delivers water to the artificial lake is blocked with sand. The prediction of the morphological changes of the shore line was carried out for 10 years. The shoreline in !996 and the predicted one in 2005 are presented in figure 4.

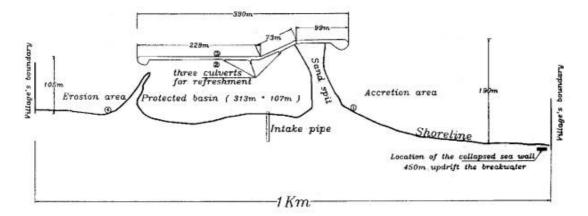


Figure 3. General layout of the project site

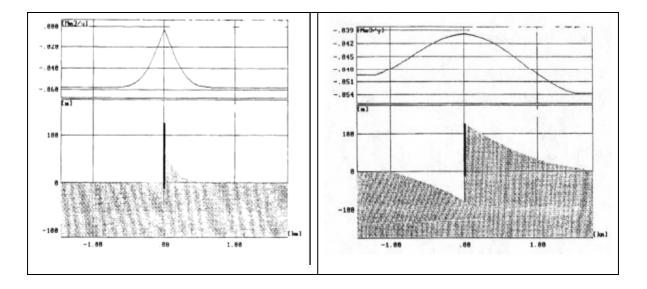


Figure 4. The shore line in 1996 (left) and the predicted in 2005 (right)

Black Sea

In 2002, numerical simulations were carried out using the UNIBEST-TC module of the UNIBEST package to study the cross-shore profile evolution in Yesil Irmak River (figure 5) after the construction of a pipeline project from a gas station in the southern Russia across the Black Sea to Ankara, Turkey (Chen et al. 2002). The simulation has been carried out for 5 years. The results show that the averaged cross-shore profile remain approximately the same. This confirms that the present crossshore profile is close to its dynamic equilibrium. The project site is located at a distance of about 5 km from the mouth of the Yesil Irmak River.

The coast at the project site is relatively straight and its orientation is about -5° with respect to the horizontal line which runs East-West.

Figure 5. Landfall location at Turkish coast

6. Other numerical simulations

Black Sea

In summer of 2001, a research project was initiated to quantify the effect of sand mining on nearshore waves and currents, assess the magnitude of any mining-related erosion, and establish guidelines for acceptable mining rates and locations. For the experimental component of the project, a coastal research station is established on the Black Sea coast of Istanbul (figure 6) to measure shoreline position, beach profiles, waves, currents, and sediment characteristics. The theoretical component of the project is based on numerical model results, with validation of some aspects of the modelling via field data. Project outcome is site-specific, but the methodology can be applied at any coastal site that features primarily non-cohesive sediments. Two wave models are used throughout the study. These are *REF/DIF-1* (Kirby and Dalrymple, 1983) and *SWAN* (Booij et al. 1999). REF/DIF-1 is a 2-dimensional finite difference model which solves the mild slope equation with the parabolic approximation to compute the wave height and the wave number distribution over a mildly sloping bathymetry. SWAN is a finite difference model which solves the conservation of action density equation in a 2-dimensional water surface. It can simulate refraction and reflection of spectral waves but not wave diffraction. It can input wind conditions

over model grid as an extra source term to the spectral energy and generate directional wave spectrum. Wave parameters obtained by REF/DIF-1 and SWAN are used to compute the shoreline evolution using a one-line model (Demir, 2002).

Figure 6. Coastline deformation due to mining operations on the Black Sea coast of Istanbul. (Courtesy of Istanbul Sand Miners Association, 1999)

Egypt Coast

The Nile Delta coastal zone exhibits a low-lying backshore which lies between+3 and -1m. from the mean sea level and is therefore vulnerable to a small rise in sea level. The three main Nile Delta promontories are the most exposed parts against direct wave attack in conjunction with the summer and autumn high tides. The cross-shore patterns of erosion and accretion versus texture of bottom sediment across a beach profiles have been studied for testing the **Bruun model** (Lofty & Frihy, 1995). This model assumes that the grain sizes must be uniform across the zones of beach profile erosion versus deposition. Results reveal that nearshore is composed of awide varieties of sand sizes, with sand becoming usually finer in the offshore direction. The eroded sand on the upper beach face is coarser and better sorted (average, MZ=2.63 φ and σ 1=0.62 φ) than the accreted shallow offshore ones (average, MZ=3.1 φ and σ 1=0.79 φ). Bruun model ignores the cross-shore sediment transport processes due to the hydrodynamic sorting that takes place across a beach profiles.

Italy coast

Bruun Rule and its more recent formulations, a modified model to predict shoreline retreat as a consequence of sea level rise was was applied to predict shoreline retreat along the Tuscany

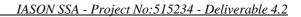
coast. Offshore ramp and inland morphology are here considered to improve the accuracy of the prediction. Polynomial equations have been used to fit beach profiles and a dedicated software was created to simulate beach evolution under different models and scenarios (Pranzini and Rossi, 1995)

Israeli Coast

A sedimentological impact study was carried out by IOLR in cooperation with Danish Hydraulics and Environment in order to investigate impacts of Hailfa's port breakwater expansion. To derive input data for the calibration and verification of the sedimentological models run at *DHI (1-line LITPACK and 2-D MIKE 21)* a series of field studies were carried out by IOLR. They included comparison of waterline position changes during 1945-1997, differential bathymetric maps, sand granulometric analyses and meteomarine data gathering and analyses (waves, currents, sea-level, wind). The major outcome of the field study resulted from the differential maps of the surroundings of the port. It showed that during 69 years since the port construction, about 5.3 million m³ of sand have accumulated in the bay near the existing main breakwater, while another 0.7 million m3 have bypassed the breakwater (based on the model results) and fed the beaches of the bay. The study also showed that the majority of the sand is of Nilotic source, being of quartz type. This would correspond to an average net yearly transport of about 87,000m³. Such an yearly averaged value misleads proper understanding of the coastal processes, as a major part of the above 6 million m³ of sand were transported in a small number of rare strong Wly storm events (Rosen, 2002).

REFERENCES

Ccoastal erosion


- AHMED A.S.M., 2004, Mathematical model investigation of the suitable countermeasure for the erosion problem at Rosetta promontory, Egypt, Proceedings of the Sixth International Summer Symposium, JSCE, Saitama University, July 31, 2004, pp. 157-160
- ANAGNOSTOU CH., 2005, Anthropogenic activities along the Hellenic coasts, State of the Hellenic Marine Environment, HCMR, Athens, pp 301-308
- BARTOLETTI E., CIPRIANI L.E., DREONI, A.M., MONTELATICI, M AND E. PRANZINI, 1996,
 Beach first response to stabilization works: A case study at the Cecina River mouth (Italy), Proceedings of the 2nd international conference on the mediterranean coastal environment (MEDCOAST 95), October 24-27 1995, Tarragona, Spain BENASSAI E., GENTILOMO M., RAGONE A., SETARO F. AND U. TOMASSICHIO, 1997, Littoral Restoration by means of Protected Beach Nourishment Recent Italian Works, PIANC Bulletin, No. 94, pp. 43-55
- BOWMAN D. AND PRANZINI E., 2003, Reversed response within a segmented detached breakwater, the Tuscany coast, Italy a case study. Coastal Engineering, vol. 49, pp. 263 274
- CAFFYN A. AND JOBBINS G., 2003, Governance Capacity and Stakeholder Interactions in the Development and Management of Coastal Tourism: Examples from Morocco and Tunisia, Journal of Sustainable Tourism vol. 11, No. 2 & 3
- CEP, 1999, The protection of roots of life, Ljubljana, The Council for Environmental protection of the Republics of Slovenia
- CETIN H., BAL Y. AND DEMIRKOL C., 1999, Engineering and environmental effects of coastline changes in Turkey, northeastern Mediterranean Environmental and Engineering Geoscience, vol. 5, no. 3, pp. 315-330
- CIAVOLA P., MANTOVANI F., SIMEONI U. AND TESSARI U., 1999, Relation between river dynamics and coastal changes in Albania: an assessment integrating satellite imagery with historical data, Int. journal of remote sensing, vol. 20, no. 3, pp. 561-584
- CORRADI N., FIERRO G., GAMBONI S., IVALDI R. AND PICCIONI D., 2004, Artificial nourishment of the Vesima Beach (Genoa): sedimentological and morphological results, Chemistry and Ecology, vol. 20, pp. S167–S176
- DIE (State Inst. of Statistics), 1997, Year Statistics, Ankara, Turkey

- DOUKAKIS E., 2004, The Dilemma of the Illegibility of State Vision: The Greek Coastal Legislation, FIG Working Week 2004 Athens, Greece, May 22-27, 2004
- EL-SAMMAK A.A, 1996, Coastal zone management in Egypt: present status and response options, Proceedings of the 2nd international conference on the mediterranean coastal environment (MEDCOAST 95), October 24-27 1995, Tarragona, Spain , 1996

EUROSION project, (2002-2004), http://www.eurosion.org/shoreline/index.html

- FANOS A.M., FRIHY O.E., KHAFAGY A.A. AND P.D. KOMAR, 1991, Processes of shoreline change along the Nile Delta coast of Egypt, Coastal Sediments'91 Conf. USA, vol 2, pp 1547–1557
- FANOS M. A., NAFFAA G..M., ALI M.M. AND GEWILLI M.Y., 1996, Coastal processes along Burullus headland Nile Delta, Egypt, Proceedings of the 2nd international conference on the mediterranean coastal environment (MEDCOAST 95), October 24-27 1995, Tarragona, Spain, 1996
- FIERRO G. AND IVALDI R., 2001, The atlas of the Italian beaches: a review of coastal processes. In: Ozhan E (ed). MEDCOAST, Turkey, p 1557-1566
- FRIHY O.E., EL BANNA M.M. AND EL KOLFAT A.I., 2004, Environmental impacts of Baltim and Ras El Bar shore-parallel breakwater systems on the Nile delta littoral zone, Egypt Environmental Geology, vol. 45, pp. 381–390
- FRIHY, O. E.; ISKANDER, M. M. AND BADR A.E.M.A., 2004, Effects of shoreline and bedrock irregularities on the morphodynamics of the Alexandria coast littoral cell, Egypt Geo-Marine Letters, vol. 24, pp. 195–211
- FRIHY O. E. AND LOTFY M. F., 1997, Shoreline changes and beach-sand sorting along the northern Sinai coast of Egypt, Geo-Marine Letters, vol. 17, pp. 140-146
- GAILLOT S. AND PIÉGAY H., 1999, Impact of Gravel-Mining on Stream Channel and Coastal Sediment Supply: Example of the Calvi Bay in Corsica (France), Journal of Coastal Research: vol. 15, No. 3, pp. 774–788
- GOLIK A., ROSEN D.S., GOLAN A., SHOSHANY M., DICASTRO D. AND HARARI P., 1997, Ashdod port's effect on the shoreline, seabed and sediment, Proc. 25th ICCE, Orlando, USA, 1997, vol. 4, Chap 339, ASCE, NY, USA, pp. 4376-4389
- GÖSKEL, C. BILDIRICI I., EKERCIN S., IPBUKER C., OZERMAN U. AND ULUGTEKIN N., 1999, An analysis of Aegean coastal line remotely sensing imagery, International Symposium on Remote Sensing and Integrated Technologies, C. Ormeci (ed.), Istanbul 20-22 October 1999, pp. 361-368

- GÜRBÜZ K., 2000, An example of river course changes on a delta plain: Seyhan Delta (Çukurova plain, southern Turkey), <u>Geological Journal</u>, vol. 4, Issue 1-2, pp. 211–222
- HANSON H., 1993, Beach Erosion at San Vito Lo Capo, Sicily, Italy, Proc. MED- COAST 93, pp. 945-959
- HANSON H., BRAMPTON A., CAPOBIANCO M., DETTE H.H., HAMM L., LAUSTRUP C., LECHUGA A., AND SPANHOFF R., 2002, Beach Nourishment Projects, Practices, and Objectives-A European Overview, Coastal Engineering, vol. 47, pp. 81-111
- IRTEM E, KABDASLI S. AND AZBAR N., 2005, Coastal Zone Problems and Environmental Strategies to be Implemented at Edremit Bay, Turkey Environmental Management vol. 36, no. 1, pp. 37–47
- IRTEM E, KABDASLI S. AND GEDIK N., 2001, Analysis of shoreline changes by a numerical model and application to Altinova, Turkey. Journal of Coastal Research Special Issue, vol. 34, pp. 97–402
- KLEIN M., AND ZVIELY D., 2001, The environmental impact of marina development on adjacent beaches: a case study of the Herzliya marina, Israel Applied Geography, vol. 21 pp. 145–156
- LECHUGA A., 1994, Littoral Dynamics and shoreline Erosion: Selected Spanish Cases, U.S.-Spain Workshop on Natural Hazards
- LIQUETE A., CANALS M., ARNAU P., URGELES R. AND DE MADRON X. DURRIEU, 2004, The Impact of Humans on Strata Formation Along Mediterranean Margins, Oceanography vol.17, no.4, pp 70-79
- OGRIN D., 1992, Dendrogomorphological Analysis of Erosion Processes Two Case, Studies from Koprsko Primorje (Slovenia), Proceedings of the International Symposium "Geomorphology and Sea", Mali Lošinj, University of Zagreb, pp. 115-189
- OZHAN E., 2002, Coastal Erosion Management in the Mediterranean: An overview. Split: PAP/RAC., 26 p.
- PRANZINI E., 2002, Expert Meeting On Coastal Erosion, Priority Actions Programme Regional Activity Centre, Split, January 10-11, 2002
- RODRÍGUEZ I., 1999, Evolución geomorfológica del Delta del Ebro y prognosis de su Evolución. Tesis Doctoral. Departamento de Geografía, Universidad de Alcalá de Henares.

- ROSEN D., 2002, Long term remedial measures of sedimentological impact due to coastal developments on the south eastern Mediterranean coast, Littoral 2002, The Changing Coast, Eurocast/EUCC, Portugal
- SABATIER F. AND PROVANSAL M., 2000, Sandbar morphology on the Espiguette spit, Mediterranean Sea, France, Marine Sandwave Dynamics – 23 & 24 March 2000 – Lille, France
- SABATIER F.,1997, Les dynamiques sédimentaires du littoral occidental du delta du Rhône, D.E.A. report, University of Aix-Marseille, Geographic Institute
- SANCHEZ-ARCILLA A. AND JIMENEZ J.A., 2002, Erosion littorale en Méditerranée occidentale: dynamique, diagnostic et remèdes, Coastal dynamics and rehabilitation – the Spanish case, Tanger, 18-21 Septembre 2002, C I E S M Workshop Series
- SERRA J., 1997, El sistema sedimentario del Delta del Ebro. Revista de Obras Públicas, num.3.368, pp. 15 22
- SIMEONI U., ATZENI P., BONORA N., BORASIO E., DEL GRANDE C., GABBIANELLI G. AND GONELLA M., 2002, Integrated Management Study of Comacchio Coast (Italy) Journal of Coastal Research, vol. 36, pp. 686-693
- SIMEONI U., PANO N. AND CIAVOLA P., 1997, The coastline of Albania: Morphology, evolution and coastal management issues, Transformations and evolution of Mediterranean coastline, Bulletin de l'Institut Oceanographique, Monaco, no. 18, pp. 151-168
- SNOUSSI M., HAÏDA S. AND IMASSI S., 2002, Effects of the construction of dams on the water and sediment fluxes of the Moulouya and the Sebou Rivers, Morocco Regional Environmental Change, vol 3, Numbers 1-3, pp. 5-12
- ZOURARAH B., 1994, La zone littorale de la Moulouya (Maroc nordoriental), Transits se'dimentaires, e'volution morphologique, ge'ochimie et e'tat de la pollution, Thesis no. 1250, University Mohamed V, Rabat, 197 p.
- ŽUMER J., 1990, Recent Development of Cliffs on the Coast of Slovenian Istria, Proceedings of 5th Scientific Conference of Geomorphologists of Yugoslavia (in Slovenian), Krško, SAZU Ljubljana, pp 143-147

Erosion models

- ABUL-AZM A.G. AND RAKHA K.A., 1997, Environmental Concerns for Marina Planning in the Gulf of Suez, The third international conference on the Mediterranean coastal environment, MEDCOAST 97, Malta
- AHMED A.S.M., 2004, Mathematical model investigation of the suitable countermeasure for the accretion problem at Rosetta estuary, Egypt, Proc. of International Conference Ocean'04 /Techno-Ocean'04, Kobe, Japan, pp. 78-82
- AHMED A. S. M., 2004, 2DH Numerical Simulations of the Erosion Problem at Rosetta Promontory, Egypt, Littoral 2004, Aberdeen, Scotland, UK, pp. 684-685
- BOOJI, N., RIS, R.C., AND HOLTHUIJSEN L.H., 1999, A third-generation wave model for coastal regions, Part I, Model description and validation, Journal of Geophysical Research, vol. 104, pp. 7649-7666
- CHEN Z., VENTURI M. AND BIJKER R., 2002, Morphology and pipeline design through a dynamic landfall area the black sea pipeline case, Proceedings of OMAE 2002: 21th International Conference on Offshore Mechanics and Arctic Engineering June, 2002. Oslo, Norway
- CAPOBIANCO M., HANSON H., LARSON M., STEETZEL H., STIVE M.J.F., CHATELUSE Y., AARNINKHO S. AND KARAMBAS T., 2002, Nourishment design and evaluation: applicability of model concepts, Coastal Engineering, vol. 47, pp. 113–135
- DELFT HYDRAULICS, 1994, UNIBEST, A Software Suite for the Simulation of Sediment Transport Processes and Related Morphodynamics of Beach Profiles and Coastline Evolution, Programme Manual, Delft Hydraulics, Delft, The Netherlands
- DEMIR H., 2002, "Effects of dredge holes on the shoreline change in the Black Sea." M.S. Thesis, Civil Engineering Department, Boğaziçi University, Istanbul, Turkey
- DEMIR H., OTAY E.N., WORK P.A. AND BOEREKCI O.S., 2004, Impacts of Dredging on Shoreline Change, Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 130, Issue 4, pp. 170-178
- HANSON H., 1989, GENESIS A Generalized Shoreline Change Numerical Model, J. Coastal Research, vol. 5(1), pp. 1-27
- Istanbul Sandminers Association, 1999. First International Marine Sand Platform, pp. 52, Istanbul

- KIRBY, J.T. AND DALRYMPLE R.A., 1983, A parabolic equation for the combined refraction diffraction of stokes waves by mildly varying topography." Journal of Fluid Mechanics, 136, pp. 543-566
- LARSON, M. AND KRAUS N.C., 1989, SBEACH: Numerical model for simulating storminduced beach change. U.S. Army Corps Eng. Tech. Rep. CERC-89-9, 256 pp
- LOFTY M.F. AND FRIHY O.E., 1996, Test of Bruun Model based on cross-shore variations in sediment texture of the nearshore zone off the Nile Delta coast, Egypt, Proceedings of the 2nd international conference on the mediterranean coastal environment (MEDCOAST 95), October 24-27 1995, Tarragona, Spain , 1996
- PRANZINI E. AND ROSSI L., 1996, A new Bruun-Rule-based model: an application to the Tuscany coast, Italy, Proceedings of the 2nd international conference on the mediterranean coastal environment (MEDCOAST 95), October 24-27 1995, Tarragona, Spain, 1996
- ROSEN D., 2002, Long term remedial measures of sedimentological impact due to coastal developments on the south eastern Mediterranean coast, Littoral 2002, The Changing Coast, Eurocast/EUCC, Portugal
- SABATIER F., LAMBERT A., CHAIBI M., SAMAT O., VELLA C. AND PROVANSAL M., 2002, Experimental and Numerical Approach of Beach Profile Change On Sandy Microtidal Environment. General Assembly, Nice, 21-26 April 2002